首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strains containing the conditional-lethal dfp-707 mutation, which have a defect in DNA synthesis at 42 degrees C, were found to require either pantothenate or its precursor, beta-alanine, for growth at 30 degrees C. The auxotrophy and conditional lethality were corevertible. Through localized mutagenesis of the dfp-pyrE region of Escherichia coli, another mutation, dfp-1, was obtained. It conferred the auxotrophy but not the conditional lethality of dfp-707. Complementation analysis, performed with a set of plasmid-borne deletion and insertion mutations, revealed a correspondence between the complementation of each mutant phenotype and the production of the dfp gene product, previously identified as a 45-kilodalton flavoprotein. The dfp mutants had a normal level of aspartate-1-decarboxylase, which is the only enzyme known to produce beta-alanine in E. coli and which is specified by the distant panD gene. A prototrophic pseudorevertant of a dfp-1 strain was found to have retained the dfp mutation, to be genetically unstable, and to have an elevated level of aspartate-1-decarboxylase, suggesting that it had acquired a duplication of panD. It is not known what steps in pantothenate or DNA metabolism are affected by the mutant dfp product or how its flavin moiety may be involved.  相似文献   

2.
Pantothenate (pan) auxotrophs of Escherichia coli K-12 and Salmonella typhimurium LT2 were characterized by enzymatic and genetic analyses. The panB mutants of both organisms and the pan-6 ("panA") mutant of S. typhimurium are deficient in ketopantoate hydroxymethyltransferase, whereas the panC mutants lack pantothenate synthetase. panD mutants of E. coli K-12 were previously shown to be deficient in aspartate 1-decarboxylase. All mutants showed only a single enzyme defect. The finding that the pan-6 mutant was deficient in ketopantoate hydroxymethyltransferase indicates that the genetic lesion is a panB allele. The pan-6 mutant therefore is deficient in the utilization of alpha-ketoisovalerate rather than the synthesis of alpha-ketoisovalerate, as originally proposed. The order of the pan genes of E. coli K-12 was determined by phage P1-mediated three-factor crosses. The clockwise order was found to be aceF panB panD panC tonA on the genetic map of E. coli K-12. The three-factor crosses were greatly facilitated by use of a closely linked Tn10 transposon as the outside marker. We also found that supplementation of E. coli K-12 auxotrophs with a high concentration of pantothenate or beta-alanine increased the intracellular coenzyme A level two- to threefold above the normal level. Supplementation with pantoate or ketopantoate resulted in smaller increases.  相似文献   

3.
Beta-alanine synthesis in Escherichia coli.   总被引:11,自引:9,他引:2       下载免费PDF全文
J E Cronan  Jr 《Journal of bacteriology》1980,141(3):1291-1297
The enzyme, aspartate 1-decarboxylase (L-aspartate 1-carboxy-lyase; EC 4.1.1.15), that catalyzes the reaction aspartate leads to beta-alanine + CO2 was found in extracts of Escherichia coli. panD mutants of E. coli are defective in beta-alanine biosynthesis and lack aspartate 1-decarboxylase. Therefore, the enzyme functions in the biosynthesis of the beta-alanine moiety of pantothenate. The genetic lesion in these mutants is closely linked to the other pantothenate (pan) loci of E. coli K-12.  相似文献   

4.
l-Aspartate-alpha-decarboxylase (PanD) catalyzes the decarboxylation of aspartate to produce beta-alanine, a precursor of Coenzyme A (CoA). The pyruvoyl-dependent enzyme from Escherichia coli is activated by self-cleavage at serine 25 to generate a 102-residue alpha subunit with the pyruvoyl group at its N terminus and a 24-residue beta subunit with a hydroxy at its C terminus. A mutant form of the panD gene from E. coli in which serine 25 was replaced with an alanine (S25A) was constructed. Assays conducted in vitro and in vivo confirmed that the mutant version was completely inactive and was incapable of undergoing self-cleavage to generate the active form of the enzyme. The S25A panD mutant was used to replace the chromosomal copy of panD in BAP1, a strain of E. coli modified for polyketide production. Comparison of this strain with panD2 mutant strains derived from E. coli SJ16 showed an equivalent dependence on exogenous beta-alanine for growth in liquid medium. Unlike the undefined and leaky panD2 mutation, the panD S25A mutation is defined and tight. The panD S25A E. coli strain enables analysis of intracellular acyl-CoA pools in both defined and complex media and is a useful tool in metabolic engineering studies that require the manipulation of acyl-CoA pools for the heterologous production of polyketides.  相似文献   

5.
6.
Ketopantoate reductase catalyzes the second step of the pantothenate pathway after ketoisovalerate, common intermediate in valine, leucine and pantothenate biosynthesis. We show here that the Corynebacterium glutamicum ilvC gene is able to complement a ketopantoate reductase deficient Escherichia coli mutant. Thus ilvC, encoding acetohydroxyacid isomeroreductase, involved in the common pathway for branched-chained amino acids, also exhibits ketopantoate reductase activity. Enzymatic activity was confirmed by biochemical analysis in C. glutamicum. Furthermore, inactivation of ilvC in C. glutamicum leads to auxotrophy for pantothenate, indicating that ilvC is the only ketopantoate reductase- encoding gene in C. glutamicum.  相似文献   

7.
Using gene replacement and transposon Tn5 mutagenesis, an Escherichia coli ilvC panE double mutant completely lacking ketopantoate reductase activity was isolated. This E. coli double mutant was employed to isolate the E. coli panE gene by genetic complementation. The E. coli panE gene is characterized by a 912 bp coding region, which specifies a protein of 303 amino acids with a deduced molecular mass of 33.8 kD. A panE expression plasmid carrying the panE gene under the control of the tac promotor was constructed. Introduction of the panE expression plasmid into E. coli resulted in a threefold increase in ketopantoate reductase activity. It was also shown that the enhanced panE expression in E. coli K12 led to 3.5-fold increase in pantothenate excretion. Pantothenate excretion could even be more enhanced when the growth medium was supplemented with ketopantoate.  相似文献   

8.
Mutants of Escherichia coli K-12 defective in the pantothenate permease (panF) were isolated and characterized. The panF mutation resulted in the complete loss of pantothenate uptake and of the ability to use extracellular vitamin for growth. The growth phenotypes of panF panD, panF panB, and panF panC double mutants showed that the cytoplasmic membrane was impermeable to external pantothenate. Analysis of the intracellular and extracellular metabolites from strain DV1 (panF panD) labeled with beta-[3-3H]alanine demonstrated that a carrier-mediated mechanism for efficient pantothenate efflux remained in the panF mutant. Genetic mapping of this nonselectable allele was facilitated by the isolation of three independent Tn10 insertions close to panF. Two- and three-factor crosses located panF at minute 72 of the E. coli chromosome and established the gene order fabE panF aroE.  相似文献   

9.
Coenzyme A (CoA) is an essential cofactor for all forms of life. The biochemistry underpinning the assembly of CoA in Escherichia coli and other enterobacteria is well understood, except for the events leading to maturation of the L-aspartate-α-decarboxylase (PanD) enzyme that converts pantothenate to β-alanine. PanD is synthesized as pro-PanD, which undergoes an auto-proteolytic cleavage at residue Ser25 to yield the catalytic pyruvoyl moiety of the enzyme. Since 1990, it has been known that E. coli yhhK strains are pantothenate auxotrophs, but the role of YhhK in pantothenate biosynthesis remained an enigma. Here we show that Salmonella enterica yhhK strains are also pantothenate auxotrophs. In vivo and in vitro evidence shows that YhhK interacts directly with PanD, and that such interactions accelerate pro-PanD maturation. We also show that S. enterica yhhK strains accumulate pro-PanD, and that not all pro-PanD proteins require YhhK for maturation. For example, the Corynebacterium glutamicum panD(+) gene corrected the pantothenate auxotrophy of a S. enterica yhhK strain, supporting in vitro evidence obtained by others that some pro-PanD proteins autocleave at faster rates. We propose the name PanM for YhhK to reflect its role as a trigger of pro-PanD maturation by stabilizing pro-PanD in an autocleavage-prone conformation.  相似文献   

10.
Regulation of coenzyme A biosynthesis.   总被引:36,自引:24,他引:12       下载免费PDF全文
Coenzyme A (CoA) and acyl carrier protein are two cofactors in fatty acid metabolism, and both possess a 4'-phosphopantetheine moiety that is metabolically derived from the vitamin pantothenate. We studied the regulation of the metabolic pathway that gives rise to these two cofactors in an Escherichia coli beta-alanine auxotroph, strain SJ16. Identification and quantitation of the intracellular and extracellular beta-alanine-derived metabolites from cells grown on increasing beta-alanine concentrations were performed. The intracellular content of acyl carrier protein was relatively insensitive to beta-alanine input, whereas the CoA content increased as a function of external beta-alanine concentration, reaching a maximum at 8 microM beta-alanine. Further increase in the beta-alanine concentration led to the excretion of pantothenate into the medium. Comparing the amount of pantothenate found outside the cell to the level of intracellular metabolites demonstrates that E. coli is capable of producing 15-fold more pantoic acid than is required to maintain the intracellular CoA content. Therefore, the supply of pantoic acid is not a limiting factor in CoA biosynthesis. Wild-type cells also excreted pantothenate into the medium, showing that the beta-alanine supply is also not rate limiting in CoA biogenesis. Taken together, the results point to pantothenate kinase as the primary enzymatic step that regulates the CoA content of E. coli.  相似文献   

11.
The linear biosynthetic pathway leading from alpha-ketoisovalerate to pantothenate (vitamin B5) and on to CoA comprises eight steps in the Bacteria and Eukaryota. Genes for up to six steps of this pathway can be identified by sequence homology in individual archaeal genomes. However, there are no archaeal homologs to known isoforms of pantothenate synthetase (PS) or pantothenate kinase. Using comparative genomics, we previously identified two conserved archaeal protein families as the best candidates for the missing steps. Here we report the characterization of the predicted PS gene from Methanosarcina mazei, which encodes a hypothetical protein (MM2281) with no obvious homologs outside its own family. When expressed in Escherichia coli, MM2281 partially complemented an auxotrophic mutant without PS activity. Purified recombinant MM2281 showed no PS activity on its own, but the enzyme enabled substantial synthesis of [14C]4'-phosphopantothenate from [14C]beta-alanine, pantoate and ATP when coupled with E. coli pantothenate kinase. ADP, but not AMP, was detected as a coproduct of the coupled reaction. MM2281 also transferred the 14C-label from [14C]beta-alanine to pantothenate in the presence of pantoate and ADP, presumably through isotope exchange. No exchange took place when pantoate was removed or ADP replaced with AMP. Our results indicate that MM2281 represents a novel type of PS that forms ADP and is strongly inhibited by its product pantothenate. These properties differ substantially from those of bacterial PS, and may explain why PS genes, in contrast to other pantothenate biosynthetic genes, were not exchanged horizontally between the Bacteria and Archaea.  相似文献   

12.
Zheng R  Dam TK  Brewer CF  Blanchard JS 《Biochemistry》2004,43(22):7171-7178
Pantothenate synthetase (EC 6.3.2.1) catalyzes the formation of pantothenate from ATP, D-pantoate, and beta-alanine in bacteria, yeast, and plants. The three-dimensional structural determination of pantothenate synthetase from Mycobacterium tuberculosis has indicated specific roles for His44, His47, Asn69, Gln72, Lys160, and Gln164 residues in the binding of substrates and the pantoyl adenylate intermediate. To evaluate the functional roles of these strictly conserved residues, we constructed six Ala mutants and determined their catalytic properties. The substitution of alanine for H44, H47, N69, Q72, and K160 residues in M. tuberculosis pantothenate synthetase caused a greater than 1000-fold reduction in enzyme activity, while the Q164A mutant exhibited 50-fold less activity. The rate of the isolated adenylation reaction in single turnover studies was also reduced 40-1000-fold by the replacement of one of these six amino acids with alanine, suggesting that these residues are essential for the formation of the pantoyl adenylate intermediate. The rate of pantothenate formation from the adenylate and beta-alanine in the second half reaction could not be measured for the H44A, H47A, N69A, Q72A, and K160A mutants and was reduced 40-fold in the Q164A mutants. The activity of the K160C mutant enzyme was markedly enhanced by the alkylation of cysteine with bromoethylamine, further supporting the critical role of the K160 residue in pantoyl adenylate formation. Isothermal titration microcalorimetry analysis demonstrated that the substitution of either H47 or K160 for Ala resulted in a decreased affinity of the enzyme for ATP. These results indicate that the highly conserved His44, His47, Asn69, Gln72, Lys160 and residues are essential for the formation and stabilization of pantoyl adenylate intermediate in the pantothenate synthetase reaction.  相似文献   

13.
The steroidal glycoalkaloid alpha-tomatine which is present in tomato (Lycopersicum sculentum) is assumed to protect the plant against phytopathogenic fungi. We have isolated a gene from the fungal pathogen Fusarium oxysporum f. sp. lycopersici that is induced by this glycoalkaloid. This gene, designated panC, encodes a predicted protein with a molecular mass of 41 kDa that shows a high degree of sequence similarity to pantothenate synthetases from yeast, plants and bacteria. Recombinant PanC protein from F. oxysporum has been over-expressed in Escherichia coli and purified to homogeneity. It shows pantothenate synthetase activity in the presence of D-pantoate, beta-alanine and ATP. The panC gene from F. oxysporum functionally complements an E. coli panC mutant, demonstrating that the PanC protein functions in vivo as a pantothenate synthetase. Southern analysis of F. oxysporum genomic DNA from other formae speciales indicates that there is a single copy of the pantothenate syntethase gene in this fungus. The presence of a STRE consensus sequence (CCCCT) in the promoter region of the gene suggests that the induction of panC may be part of a cellular stress response triggered by alpha-tomatine.  相似文献   

14.
Like all bacteria, Mycobacterium tuberculosis (Mtb) possesses the genes necessary for coenzyme A biosynthesis and metabolism. In the present work, the Mtb panD gene was PCR amplified, overexpressed, and purified by metal affinity chromatography. The recombinant Mtb panD was found to exist as a tetramer in solution. Incubation of Mtb panD at 37 degrees C for several hours resulted in a complete cleavage of the inactive (pi) form into the two subunits (alpha and beta). The cleavage was confirmed by Western blot analysis as well as by N-terminal sequencing. Cleaved Mtb panD was assayed for decarboxylase activity with L-aspartate as substrate. The kinetic parameters K(m) and k(cat) were found to be 219 microM and 0.65s(-1), respectively. These results provide the means for further studies based on the identification of the Mtb panD as well as other components of pantothenate metabolism as potential drug targets.  相似文献   

15.
A selection procedure for uracil catabolism mutant strains involving indicator dye plates was developed. Using this method, a strain defective in uracil catabolism has been isolated in Salmonella typhimurium that was temperature-sensitive at 42 degrees C where it required low concentrations of N-carbamoyl-beta-alanine, beta-alanine or pantothenic acid for growth. An extract of the mutant strain degraded uracil at 37 degrees C at a significantly diminished rate compared to that observed for the wild-type strain under the same growth conditions. The conversion of dihydrouracil to N-carbamoyl-beta-alanine was blocked at all temperatures examined in the mutant strain. By means of genetic analysis, the mutant strain was determined to be defective at two genetic loci. Transduction studies with bacteriophage P22 indicated that the panD gene is mutated in this strain, accounting for its beta-alanine requirement. Episomal transfers between Escherichia coli and the mutant strain provided evidence that the defect in uracil catabolism was located in another region of the S. typhimurium chromosome.  相似文献   

16.
17.
Preparation of high-specific-activity D-[3-3H]pantothenic acid   总被引:1,自引:0,他引:1  
High-specific-activity D-[3-3H]pantothenic acid (5 Ci/mmol) was prepared from commercially available beta-[3-3H]alanine employing Escherichia coli strain DV1 (panD2 pan F1). This strain is defective in beta-alanine synthesis and pantothenate uptake, and under appropriate growth conditions converted 85 to 90% of the input beta-[3-3H]alanine to extracellular D-[3-3H]pantothenate. The radiolabeled vitamin was purified from the medium by thin-layer chromatography followed by reverse-phase high-performance liquid chromatography. The overall yield of D-[3-3H]pantothenic acid was 30% and radiochemical purity was greater than 99%.  相似文献   

18.
A direct sulfhydrylation pathway for methionine biosynthesis in Corynebacterium glutamicum was found. The pathway was catalyzed by metY encoding O-acetylhomoserine sulfhydrylase. The gene metY, located immediately upstream of metA, was found to encode a protein of 437 amino acids with a deduced molecular mass of 46,751 Da. In accordance with DNA and protein sequence data, the introduction of metY into C. glutamicum resulted in the accumulation of a 47-kDa protein in the cells and a 30-fold increase in O-acetylhomoserine sulfhydrylase activity, showing the efficient expression of the cloned gene. Although disruption of the metB gene, which encodes cystathionine gamma-synthase catalyzing the transsulfuration pathway of methionine biosynthesis, or the metY gene was not enough to lead to methionine auxotrophy, an additional mutation in the metY or the metB gene resulted in methionine auxotrophy. The growth pattern of the metY mutant strain was identical to that of the metB mutant strain, suggesting that both methionine biosynthetic pathways function equally well. In addition, an Escherichia coli metB mutant could be complemented by transformation of the strain with a DNA fragment carrying corynebacterial metY and metA genes. These data clearly show that C. glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. Although metY and metA are in close proximity to one another, separated by 143 bp on the chromosome, deletion analysis suggests that they are expressed independently. As with metA, methionine could also repress the expression of metY. The repression was also observed with metB, but the degree of repression was more severe with metY, which shows almost complete repression at 0.5 mM methionine in minimal medium. The data suggest a physiologically distinctive role of the direct sulfhydrylation pathway in C. glutamicum.  相似文献   

19.
As a first step in determining the importance of the anaplerotic function of phosphoenolpyruvate carboxylase (PEPC) in amino acid biosynthesis, the ppc gene coding for PEPC of Corynebacterium glutamicum ATCC13032 has been cloned by complementation of an Escherichia coli ppc mutant strain. PEPC activity encoded by the cloned gene is not affected by acetyl-CoA under conditions where the E. coli enzyme is strongly activated, whereas acetyl-CoA is able to relieve inhibition by L-aspartate used singly or in combination with alpha-ketoglutarate. Amplification of the ppc gene in a C. glutamicum lysine-excreting strain resulted in increased PEPC-specific activity and lysine productivity. The nucleotide sequence of a DNA fragment of 4885 bp encompassing the ppc gene has been determined. At the amino acid level, PEPC from C. glutamicum presents overall a high degree of similarity with corresponding enzymes from three different organisms. The location of some strictly conserved regions may have important implications for PEPC activity and allostery.  相似文献   

20.
Metabolism of 4''-phosphopantetheine in Escherichia coli.   总被引:9,自引:6,他引:3       下载免费PDF全文
Coenzyme A (CoA) and acyl carrier protein (ACP) contain 4'-phosphopantetheine moieties that are metabolically derived from the vitamin pantothenate. The utilization of metabolites in the biosynthetic pathway during growth was investigated by using an Escherichia coli beta-alanine auxotroph to specifically and uniformly label the pathway intermediates. Pantothenate and 4'-phosphopantetheine were the two intermediates detected in the highest concentration, both intracellularly and extracellularly. The specific cellular content of CoA and ACP was not constant during growth of strain SJ16 (panD) on 4 microM beta-[3-3H]alanine, and alterations in the utilization of 4'-phosphopantetheine and pantothenate correlated with the observed fluctuations of the intracellular pool sizes of CoA and ACP. Double-label experiments indicated that extracellular 4'-phosphopantetheine was derived from the degradation of ACP, and the extent that this intermediate was utilized by 4'-phosphopantetheine adenylyltransferase exerted control over the degradative aspect of the pathway. Control over the biosynthetic aspect of the biochemical pathway was exerted at the level of pantothenate utilization by pantothenate kinase. Reduction in the specific cellular content of CoA and ACP by 4'-phosphopantetheine excretion was irreversible since, in contrast to pantothenate, strain SJ16 was unable to assimilate exogenous 4'-phosphopantetheine into CoA or ACP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号