首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
sGC (soluble guanylate cyclase) is the main mediator of NO signalling. Biochemical and physiological studies suggest that, besides NO, in vivo regulation of sGC involves direct interaction with other proteins. Using yeast two-hybrid screening, we identified that the multidomain LGN (Leu-Gly-Asn repeat-enriched protein) interacts with both α1 and β1 sGC subunits. LGN and sGC co-localized in the cell cytoplasm, and the LGN-sGC complex was co-immunoprecipitated from cells expressing both proteins and from native tissues. Their interaction requires the N-terminal tetratricopeptide repeats of LGN, but does not require the N-terminal portions of α1 or β1 sGC subunits. Overexpression of LGN decreases the activity of cellular sGC, whereas knockdown of LGN mRNA and protein correlated with increased sGC activity. Although purified LGN interacts directly with purified sGC, the inhibitory effect in vitro is observed only after supplementation of cell lysate to the reaction. Although resting sGC and sGC activated by the stimulator BAY41-2272 have very similar LGN-IC50 values to the NO-stimulated sGC, they have a much higher Hill coefficient, suggesting co-operative binding with respect to LGN in the low-activated state of sGC. AGS3 (activator of G-protein signalling 3), the closest LGN homologue, also inhibits sGC. The interaction of sGC with these scaffolding proteins may expand the cross-talk between NO/cGMP signalling and other cellular pathways and tailor sGC function to specific tissues or signals.  相似文献   

2.
In rat cerebellum the major portion of guanylate cyclase was found to be particulate-bound. The properties of particulate and supernatant guanylate cyclases from the cerebellum were comparatively examined. Both enzymes required the same optimal concentration of Mn2+ and were stimulated by Ca2+ in the presence of a low concentration of Mn2+. But dispersion of the particulate enzyme with Triton X-100 altered the Mn2+ concentration producing maximum activity and the inhibitory effect of Ca2+. The subcellular distributions of guanylate and adenylate cyclases were also studied in rat cerebellum. The major portions of the two cyclases were found in the mitochondrial fraction. The submitochondrial fractions separated by sucrose gradient showed that the major activities of both cyclases were concentrated in the fraction containing mainly nerve ending particles.  相似文献   

3.
The soluble form of guanylate cyclase from rat lung has been purified approximately 23,000-fold to homogeneity by isoelectric precipitation, GTP-Sepharose chromatography, and preparative gel electrophoresis. A single protein-staining band is observed after analytical gel electrophoresis on either 4 or 7.5% polyacrylamide gels. The final purified enzyme has a specific activity of about 700 nmol of cyclic GMP formed/min/mg of protein at 37 degrees C in the presence of 4.8 mM MnCl2 and 100 micrometer GTP. Bovine serum albumin appears to slightly increase guanylate cyclase activity, but mainly stabilizes the purified enzyme; in its presence, specific activities in excess of 1 mumol of cyclic GMP formed/min/mg of enzyme protein can be obtained. When Mg2+ or Ca2+ are substituted for Mn2+, specific activities decrease to approximately 21 and 40 nmol of cyclic GMP formed/min/mg of protein, respectively. The apparent Michaelis constant for MnGTP in the presence of 4.8 mM MnCl2 is 10.2 micrometer. Kinetic patterns on double reciprocal plots as a function of free Mn2+ are concave downward. The native enzyme has a molecular weight of approximately 151,000 as determined on Sephacryl S-200; sodium dodecyl sulfate-polyacrylamide gel electrophoresis results in two protein-staining bands with approximate molecular weights of 79,400 and 74,000. Thus, it appears that the soluble form of guanylate cyclase from rat lung exists as a dimer.  相似文献   

4.
5.
The guanylate cyclase reaction was studied to determine the identity of the product(s) formed other than guanosine-3′,5′-monophosphate (cyclic GMP). Partially purified guanylate cyclase preparations from rat lung catalyzed the formation of nearly equal amounts of PP1 and of cyclic GMP from GTP. Column chromatography of the enzyme preparation on DEAE-Sephadex or Bio-Gel A-5m failed to separate the enzyme(s) involved in formation of cyclic GMP and of PP1. Nucleotide inhibitors of cyclic GMP formation also inhibited PP1 formation, and Ca2+, a stimulant of cyclic GMP formation in the presence of Mn2+, also stimulated PP1 formation. Detectable PP1 formation was not observed when ATP was present instead of GTP.The results show that guanylate cyclase, in vitro, catalyzes the formation of pyrophosphate from GTP concomitant with the synthesis of cyclic GMP.  相似文献   

6.
The soluble guanylate cyclase from rat lung was immobilized by absorption rather than covalent attachment on hexyl-, octyl-, or decyl-agarose. The enzyme retained activity after being bound to these matrices and could be compared to the soluble, mobile form of the enzyme. Compared to the soluble enzyme, the immobilized guanylate cyclase had a lower apparent maximal velocity and a higher apparent Km for MeGTP in the presence of Mg2+, Ca2+, or Mn2+. The apparent maximum velocity was reduced to the same extent by hexyl-, octyl-, or decyl-agarose, but the reduction in activity was greater with Mg2+ than with Ca2+ or Mn2+. Both the soluble and immobilized guanylate cyclase displayed concave downward patterns on double reciprocal polots as a function of Mn2+, and Ca2+ caused apparent activation of either form of the enzyme. MnATP appeared to be a linear competitive inhibitor with respect to MnGTP for both forms of the enzymes but the ki was 3 micron for the soluble form and 30 micron for the immobilized form. These results demonstrate that the soluble form of guanylate cyclase from rat lung retains many of its basic properties after being immobilized on a hydrophobic matrix; however, rather pronounced decreases in the maximum velocity and increases in the apparent Michaelis constant for MeGTP, particularly for MgGTP, are observed upon immobilization.  相似文献   

7.
Soluble guanylate cyclase purified from rat lung exists as a heterodimer of two subunits (70 kDa and 82 kDa). Recent cloning and sequencing of both subunit entities have revealed their primary structures. Transient expression in COS-7 cells by transfection with expression vectors containing the coding regions of the 70 kDa or the 82 kDa subunit cDNA showed no guanylate cyclase activity when cells were transfected with either subunit cDNA alone. However, a marked enzymatic activity was found after transfection with both subunits that was activated by sodium nitroprusside. The combination of separately expressed guanylate cyclase subunits could not reconstitute enzymatic activity in vitro. Furthermore, cotransfection with antisense oligonucleotides against the 70 kDa subunit or the 82 kDa subunit mRNA inhibited the guanylate cyclase activity. These data indicate that both the 70 kDa and the 82 kDa subunits must be present and interactive with each other in order to see basal guanylate cyclase activity and activation with sodium nitroprusside.  相似文献   

8.
Carbon monoxide induces delayed neurological and neuropathological alterations, including memory loss and cognitive impairment. The bases for the delay remain unknown. Activation of soluble guanylate cyclase by nitric oxide modulates some forms of learning and memory. Carbon monoxide binds to soluble guanylate cyclase, activating it but interfering with its activation by nitric oxide. The aim of this work was to assess whether exposure of rats to carbon monoxide alters the activity of soluble guanylate cyclase or its modulation by nitric oxide in cerebellum or cerebral cortex. Rats exposed chronically or acutely to carbon monoxide were killed 24 h or 7 days later. Acute carbon monoxide exposure decreased cyclic guanosine monophosphate (cGMP) content and reduced activation of soluble guanylate cyclase by nitric oxide. Cortex was more sensitive than cerebellum to chronic exposure, which reduced activation of soluble guanylate cyclase by nitric oxide in cortex. In cerebellum, chronic exposure induced delayed impairment of soluble guanylate cyclase activation by nitric oxide. Acute exposure effects were also stronger at 7 days than at 24 h after exposure. This delayed impaired modulation of soluble guanylate cyclase by nitric oxide may contribute to delayed memory loss and cognitive impairment in humans exposed to carbon monoxide.  相似文献   

9.
Analysis of soluble guanylate cyclase of rat platelets (105,000 g supernatant) revealed no activating effect of sodium nitroprusside on the enzyme activity. Dithiothreitol (2 x 10(-4) H) added to the sample stimulated the basal activity of guanylate cyclase in the presence of Mg2+ but did not induce the enzyme activation by sodium nitroprusside. Hemoglobin added to the enzyme did not influence its basal activity or the activating effect of sodium nitroprusside. DEAE-Cellulose chromatography of the 105,000 g supernatant revealed two protein peaks, I and II, of which only peak II possessed a guanylate cyclase activity. Fraction I added to a partly purified enzyme did not change the enzyme activity, nor did it enhance the sodium nitroprusside-induced activation of guanylate cyclase. Spectral analysis of the 105,000 g supernatant revealed that the presence of a maximum at 415-425 nm (Soret band) depended on the degree of plasma hemolysis. In the absence of hemolysis the Soret band was unobserved either in the 105,000 g supernatant or in fractions I and II. It is suggested that rat platelet guanylate cyclase is present in these cells in a heme-deficient state.  相似文献   

10.
Hyperammonemia is the main responsible for the neurological alterations in hepatic encephalopathy in patients with liver failure. We studied the function of the glutamate-nitric oxide (NO)-cGMP pathway in brain in animal models of hyperammonemia and liver failure and in patients died with liver cirrhosis. Activation of glutamate receptors increases intracellular calcium that binds to calmodulin and activates neuronal nitric oxide synthase, increasing nitric oxide, which activates soluble guanylate cyclase (sGC), increasing cGMP. This glutamate-NO-cGMP pathway modulates cerebral processes such as circadian rhythms, the sleep-waking cycle, and some forms of learning and memory. These processes are impaired in patients with hepatic encephalopathy. Activation of sGC by NO is significantly increased in cerebral cortex and significantly reduced in cerebellum from cirrhotic patients died in hepatic coma. Portacaval anastomosis in rats, an animal model of liver failure, reproduces the effects of liver failure on modulation of sGC by NO both in cerebral cortex and cerebellum. In vivo brain microdialisis studies showed that sGC activation by NO is also reduced in vivo in cerebellum in hyperammonemic rats with or without liver failure. The content of alpha but not beta subunits of sGC are increased both in frontal cortex and cerebellum from patients died due to liver disease and from rats with portacaval anastomosis. We assessed whether determination of activation of sGC by NO-generating agent SNAP in lymphocytes could serve as a peripheral marker for the impairment of sGC activation by NO in brain. Chronic hyperammonemia and liver failure also alter sGC activation by NO in lymphocytes from rats or patients. These findings show that the content and modulation by NO of sGC are strongly altered in brain of patients with liver disease. These alterations could be responsible for some of the neurological alterations in hepatic encephalopathy such as sleep disturbances and cognitive impairment.  相似文献   

11.
Soluble guanylate cyclase was partially purified from rat lung homogenates, and shown to be inhibited by the following sulfated polyanions, with the I50 in μg/ml in parentheses: Polyvinyl sulfate (0.33), 40,000-dalton dextran sulfate (0.45), polyanetholesulfonate (0.63) 500,000-dalton dextran sulfate (1.8), λ-carrageenan (2.9), τ-carrageenan (6.1), κ-carrageenan (48.0), heparin (68.0). There was a good correlation between inhibitory potency and sulfate content (as total sulfur). Inhibition by heparin and the carrageenans (but not the others) was potentiated by Mn2+, but not Ca2+ or Mg2+, when [Mn2+] exceeded [GTP]. Mn2+-potentiation could be blocked by high Na+. Heparin-agarose shows promise as an affinity matrix for guanylate cyclase.  相似文献   

12.
Xia Xd  Xu ZJ  Bi YT 《中国应用生理学杂志》2003,19(2):159-160,F003
目的 :探讨慢性低氧高二氧化碳对大鼠肺动脉及支气管可溶性鸟苷酸环化酶 (sGC)蛋白表达的影响。方法 :雄性SD大鼠于低氧高二氧化碳饲养舱复制动物模型 ,免疫组织化学技术观察低氧高二氧化碳组及对照组肺组织sGCα1 、β1 亚基蛋白的表达。结果 :sGC在正常大鼠肺动脉、支气管平滑肌上阳性表达并呈梯度现象 ,低氧高二氧化碳组肺细小动脉及支气管平滑肌sGC蛋白与对照组相比逐渐减弱 (均P <0 .0 1)。结论 :低氧高二氧化碳抑制肺细小动脉及支气管平滑肌sGC蛋白的表达。  相似文献   

13.
D L Vesely  D C Lehotay  G S Levey 《Enzyme》1978,23(5):356-360
The nucleotide cyclic GMP has been reported to be involved in cell proliferation and malignant transformation. Nitroso chemical carcinogens activate the enzyme guanylate cyclase (EC 4.6.1.2) which catalyzes the production of cyclic GMP. The present investigation demonstrates that compounds from other major classes of carcinogens including (1) alpha-halo ethers (chloromethyl methyl ether); (2) aromatic amines (benzidine and B-naphthylamine); (3) polycyclic hydrocarbons (1,2-benzanthracene and acridine); (4) azo dyes (p-dimethylaminoazobenzene), and (5) aflatoxins (B1, B2, G1, G2) produced a striking and significant inhibition of guanylate cyclase over a general concentration range of 0.5-13 mmol/1 in a variety of tissues. Some of the nitrosamides which increase guanylate cyclase activity, increase DNA synthesis whereas carcinogens which decrease guanylate cyclase activity inhibit DNA or RNA synthesis suggesting a relationship between cyclic GMP, DNA synthesis, and chemical carcinogenesis.  相似文献   

14.
ACh regulates arousal, and the present study was designed to provide insight into the neurochemical mechanisms modulating ACh release in the pontine reticular formation. Nitric oxide (NO)-releasing beads microinjected into the pontine reticular formation of C57BL/6J (B6) mice significantly (P < 0.0001) increased ACh release. Microdialysis delivery of the NO donor N-ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino)-ethanamine (NOC-12) to the mouse pontine reticular formation also caused a concentration-dependent increase in ACh release (P < 0.001). These are the first neurochemical data showing that ACh release in the pontine reticular formation of the B6 mouse is modulated by NO. The signal transduction cascade through which NO modulates ACh release in the pontine reticular formation has not previously been characterized. Therefore, an additional series of studies quantified the effects of a soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), on ACh release in the cat medial pontine reticular formation. During naturally occurring states of sleep and wakefulness, but not anesthesia, ODQ caused a significant (P < 0.001) decrease in ACh release. These results show for the first time that NO modulates ACh in the medial pontine reticular formation of the cat via an NO-sensitive sGC signal transduction cascade. Isoflurane and halothane anesthesia have been shown to decrease ACh release in the medial pontine reticular formation. The finding that ODQ did not alter ACh release during isoflurane or halothane anesthesia demonstrates that these anesthetics disrupt the NO-sensitive sGC-cGMP pathway. Considered together, results from the mouse and cat indicate that NO modulates ACh release in arousal-promoting regions of the pontine reticular formation via an NO-sensitive sGC-cGMP pathway.  相似文献   

15.
Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) was purified 2250-fold from the synaptosomal soluble fraction of rat brain. The specific activity of the purified enzyme reached 41 nmol cyclic GMP formed per min per mg protein at 37 degrees C. In the purified preparation, GTPase activity was not detected and cyclic GMP phosphodiesterase activity was less than 4% of guanylate cyclase activity. The molecular weight was approx. 480 000. Lubrol PX, hydroxylamine, or NaN3 activated the guanylate cyclase in crude preparations, but had no effect on the purified enzyme. In contrast, NaN3 plus catalase, N-methyl-N'-nitro-N-nitrosoguanidine or sodium nitroprusside activated the purified enzyme. The purified enzyme required Mn2+ for its activity; the maximum activity was observed at 3-5 mM. Cyclic GMP activated guanylate cyclase activity 1.4-fold at 2 mM, whereas inorganic pyrophosphate inhibited it by about 50% at 0.2 mM. Guanylyl-(beta,gamma-methylene)-diphosphonate and guanylyl-imidodiphosphate, analogues of GTP, served as substrates of guanylate cyclase in the purified enzyme preparation. NaN3 plus catalase or N-methyl-N'-nitro-N-nitrosoguanidine also remarkably activated guanylate cyclase activity when the analogues of GTP were used as substrates.  相似文献   

16.
Two monoclonal antibodies (mAbs) against bovine lung soluble guanylate cyclase (sGC) were prepared and characterized. mAb 3221 recognized both the alpha- and beta-subunits of sGC and had greater binding affinity to the enzyme in the presence of NO. mAb 28131 recognized only the beta-subunit and its affinity did not change with NO. Neither mAb cross-reacted with particulate GC. Cultured Purkinje cells from rats were treated with S-nitroso-N-acetylpenicillamine, an NO donor, and examined by immunocytochemical methods. The immunoreactivity associated with mAb 3221 increased with the cGMP content in a crude extract of cerebellum and the NO2 generated in the culture medium increased.  相似文献   

17.
Isolated rat renal glomeruli contain an adenylate cyclase system and guanylate cyclase system. Adenylate cyclase was strikingly activated by purified parathyroid hormone, epinephrine, prostaglandin I2 and histamine. The demonstration of PTH activated adenylate cyclase in glomeruli raises the possibility of a role of this hormone in regulation of glomerular filtration rate. Guanylate cyclase was strikingly activated by CA2+, nitrate derivatives such as sodium nitroprusside. Its role remained still unknown.  相似文献   

18.
The effect of N-(omega-aminoalkyl) derivatives of naphthalene-1-sulfamide on the activity of soluble guanylate cyclase and on human platelet aggregation at the first (reversible) step of the guanylate cyclase reaction was studied. Low (approximately 10(-7)-10(-6) M) concentrations of the above compounds were shown to stimulate the guanylate cyclase activity; some derivatives caused simultaneous inhibition of platelet aggregation induced by ADP. Some fragments of the chemical structure of the molecules responsible for the enzyme activity regulation in the tested systems were identified. The naphthalene-1-sulfamide derivatives carrying 6-aminohexyl or 8-amino-octyl groups of the sulfamide substituent as well as chlorine atom at positions 4 or 5 of the naphthalene ring appeared to be the most potent activators of platelet guanylate cyclase and inhibitors of platelet aggregation at the reversible step of the enzymatic reaction.  相似文献   

19.
Soluble guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) from rat lung demonstrated concentration-dependent stimulation, that is, an increase in specific activity with increasing enzyme (protein) concentration. This phenomenon persisted through several steps of enzyme purification and was apparently due to the presence of a macromolecular activator, similar in size to the enzyme. Treatment of partially purified enzyme with N-ethylmaleimide destroyed catalytic activity, but did not effect the ability of the preparation to stimulate activity. Kinetic analysis demonstrated that the stimulation was due to an increased V value with no change in the apparent Km value for MnGTP. Stimulation occurred without a time lag, the activator apparently interacting reversibly with the enzyme to increase catalytic capability. Some nonionic detergents of the Triton series inhibited enzyme activity by decreasing the V value, with no change in the Km value, and also decreased concentration-dependent stimulation. However, the two phenomena were not directly related. While the physiological significance of the activator is unclear, its presence affects estimations of recovery during enzyme purification, V determinations, and determinations of the effect of hormone or drug treatment on the activity of tissue extracts.  相似文献   

20.
Guanylate cyclase activity in rat lung supernatant fractions is stimulated 3-4 fold by aerobic incubation at 30 degrees C for approx. 30 min ('O2-dependent activation'). This stimulation was blocked by 20 microM-eicosa-5,8,11,14-tetraynoic acid (ETYA), an inhibitor of lipoxygenase and cyclo-oxygenase, but not by aspirin or indomethacin, which are cyclo-oxygenase inhibitors. The enzyme activator(s) is presumed to be the fatty acid hydroperoxide(s) formed by lipoxygenase. Removal of lipoxygenase from the supernatant fraction by chromatography on Amberlite XAD-4 also prevented activation, which was restored by the addition of soya-bean lipoxygenase. Bovine serum albumin prevented O2-dependent activation or activation by soya-bean lipoxygenase, through its ability to bind the unsaturated fatty acid substrate of lipoxygenase. The lipoxygenase in the supernatant fraction is inhibited by endogenous glutathione peroxidase plus reduced glutathione (GSH); removal of GSH de-inhibits lipoxygenase and activates guanylate cyclase. This was effected by autoxidation, by cumene hydroperoxide (with GSH peroxidase) and by titration with N-ethylmaleimide (NEM). Activation by NEM was inhibited by serum albumin or ETYA, as was activation by low concentrations (less than 50 microM) of cumene hydroperoxide. Activation by higher concentrations was not so inhibited; therefore, cumene hydroperoxide can also activate by a direct effect on guanylate cyclase. A hypothesis for physiological activation is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号