首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enhancement of the overall disruption of a native strain of Candida utilis (ATCC 9226) was studied using a combination of two methods, namely, pretreatment in the form of partial enzymatic lysis by Zymolyase followed by mechanical disruption in a Microfluidizer high-pressure homogenizer. The cells were grown in both batch and continuous cultures to examine the effect of specific growth rate on disruption. Cell suspensions ranging in concentration from 7 to 120 g DW/L were disrupted with and without enzymatic pretreatment. For yeast grown in batch culture, final total disruption obtained using the combined protocol approached 95% with four passes at a pressure of 95 MPa, as compared with only 65% disruption using only mechanical homogenization. A modified model was developed to predict the fraction disrupted by the enzymatic pretreatment-mechanical homogenization two-stage process. Predicted disruptions agreed favorably with experimental observations (maximum deviation of 20%) over a wide range of operating conditions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
The disruption of commercially-available pressed Bakers' yeast (Saccharomyces cerevisiae) was studied using a relatively new high-pressure homogenizer (the Microfluidizer). Initial experiments using only mechanical disruption generally gave low disruption yields (i.e., less than 40% disruption in 5 passes). Consequently combinations of two disruption methods, namely enzymatic lysis and subsequent homogenization, were tested to identify achievable levels of disruption. The enzyme preparation employed was Zymolyase, which has been shown to effectively lyse the walls of viable yeast. Yeast cell suspensions ranging in concentration from 0.6 to 15 gDW/L were disrupted with and without enzymatic pre-treatment. Final total disruption obtained using the combined protocol approached 100% with 4 passes at a pressure of 95 MPa, as compared to only 32% disruption with 4 passes at 95 MPa using only homogenization. A model is presented to predict the fraction disrupted while employing this novel enzymatic pretreatment.Nomenclature a exponent of pressure (-) - b exponent of number of passes (-) - K disruption constant (MPa-a) - N number of passes (-) - P pressure (MPa) - R total fraction of cells disrupted (-) - Ro fraction of cells disrupted after enzymatic pre-treatment (-) - X cell concentration (dry weight) (gDW/L) abbreviation DW dry weight  相似文献   

3.
Cell disruption in a Microfluidizer was a function of both operating pressure and number of passes. The operating pressure had greater effect on the disruption than did the number of passes as indicated by the magnitude of the constants from the cell disruption equation. Protein release correlated with aminopeptidase release by Lactobacillus casei sp. casei. The optimum operating pressure for enzyme extraction was 76 MPa with loss of enzyme activity about 15 to 20%.  相似文献   

4.
The disruption of Candida utilis cells in suspensions subjected to different types of stress was investigated. Stresses caused by impingement of a high velocity jet of suspended cells against a stationary surface were found to be significantly more effective for disruption than either shear or normal stresses. The fraction of cells disrupted by impingement is a first order function of the number of passes through the disruptor and, over a prescribed range of operating pressures, is a power function of pressure. These results indicate that impingement is the predominant mechanism causing cells disruption in high pressure flow devices such as Manton–Gaulin homogenizers. The impingement results suggest that cells grown in cyclic batch culture are easier to disrupt than cells grown at a lower specific growth rate in continuous culture. In addition to determining the fraction of cells disrupted, the release of invertase activity was determined for the impingement experiments. The fraction of total invertase activity released was found to be somewhat greater than the fraction of cells disrupted.  相似文献   

5.
A native strain of Neurospora sitophila was disrupted using enzymatic pretreatment combined with mechanical disruption in order to facilitate recovery of constitutive cellulases. Exceptional disruption (approaching 100%) was achieved when the enzymatic pretreatment protocol was used prior to mechanical disruption at a low rotor speed via a new bead mill (the Annu Mill). Further, increased recovery of cellulases (ca. two-fold increases in cellulase activity per unit biomass) appears attainable when this disruption protocol is employed. The enzyme preparation employed was Zymolyase, which lyses the walls of viable fungi. Combined disruption of the mycelial biomass appears to provide a secondary source of cellulases from Neurospora sitophila in addition to the extracellular primary source derived from the filtered (unprocessed) fermentation broth.Nomenclature CMCase carboxymethyl cellulase - FPase filter paper'ase - IU international unit (mol liberated hydrolysis product/min.) - N number of passes through the bead mill (–) - R total fraction of cells disrupted (–) - Ro fraction of cells disrupted after enzymatic pretreatment alone (–) - X cell concentration (dry weight) (gDW/L) Abbreviations DW dry weight  相似文献   

6.
We investigated the pressure tolerance of deep-sea eel (Simenchelys parasiticus; habitat depth, 366–2,630 m) cells, conger eel (Conger myriaster) cells, and mouse 3T3-L1 cells. Although there were no living mouse 3T3-L1 and conger eel cells after 130 MPa (0.1 MPa = 1 bar) hydrostatic pressurization for 20 min, all deep-sea eel cells remained alive after being subjected to pressures up to 150 MPa for 20 min. Pressurization at 40 MPa for 20 min induced disruption of actin and tubulin filaments with profound cell-shape changes in the mouse and conger eel cells. In the deep-sea eel cells, microtubules and some actin filaments were disrupted after being subjected to hydrostatic pressure of 100 MPa and greater for 20 min. Conger eel cells were sensitive to pressure and did not grow at 10 MPa. Mouse 3T3-L1 cells grew faster under pressure of 5 MPa than at atmospheric pressure and stopped growing at 18 MPa. Deep-sea eel cells were capable of growth in pressures up to 25 MPa and stopped growing at 30 MPa. Deep-sea eel cells required 4 h at 20 MPa to finish the M phase, which was approximately fourfold the time required under atmospheric conditions.  相似文献   

7.
The resistance of Candida utilis (ATCC 9226) to disruption as a result of enzymatic pretreatment combined with high-pressure homogenization was found to increase when the yeast was grown from an inoculum which had previously been subjected to enzymatic pretreatment combined with high-pressure homogenization. The inoculum thus consisted of a mixture of undisrupted, viable cells and non-viable cells. The enzyme preparation employed was Zymolyase, which depolymerizes various components of the cell walls of viable yeast. A Microfluidizer was used for the high-pressure homogenization step. In order to obtain the 'disruption-resistant' cell fraction for use as an inoculum, 'normal' C. utilis was enzymatically pretreated, and subsequently homogenized (herein referred to as Microfluidization) using either three or 10 passes through the Microfluidizer at an operating pressure of 95 MPa. Yeast grown from the survivors of the enzyme/3-pass treatment were found to be somewhat more resistant to disruption by either enzymatic pretreatment alone or to enzymatic pretreatment followed by Microfluidization. Cells grown from enzyme/ 10-pass treated inocula exhibited the highest resistance to disruption. The 'disruption-resistant' fraction exhibited this characteristic through three serial re-cultivations. Possible mechanisms for the increased 'disruption-resistance' of this isolated population of C. utilis are presented.  相似文献   

8.
A comparison of quantification techniques was performed on suspensions of Saccharomyces cerevisiae which had been disrupted with a high pressure homogenizer. The quantification techniques included cell counting, monitoring protein release, UV absorbance, turbidity, sample mass loss analysis, variations in viscosity and measuring the particle size distribution of the homogenate. It was found that all quantification techniques resulted in similar relationships between the measured extent of disruption and number of passes through the homogenizer. The data from all techniques (except particle sizing) could be fitted to simple exponential decay models at various homogenization pressures. Turbidity, particle sizing and UV absorbance generally gave more conservative estimates of the extent of cell disruption compared to protein release and cell counting. Measuring both the turbidity and monitoring the release of cellular metabolites using UV absorbance gave simple, reliable and reproducible measures of disruption and were identified as being the most applicable to on-line disruption monitoring.  相似文献   

9.
Recombinant cells of Saccharomyces cerevisiae, expressing virus-like particles (Ty-VLPs), can be readily disrupted in a high pressure homogenizer and show identical disruption kinetics to the untransformed host strain. When the cells are freeze/thawed before disruption, they become about four times more resistant to homogenization. This effect increases with the number of freeze/thaw cycles, but is independent of the time the cells remain frozen. The freeze/thaw effect is observed with cells harvested during both the logarithmic and stationary phase of growth, and occurs with the untransformed host strain as well as the transformed one. Freeze/thawed cells are twice as resistant to disruption in the bead mill as fresh cells. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
Data for disruption of C. utilis, S. cerevisiae and B. subtilis cells by impingement of a high velocity jet of suspended cells against a stationary surface are compared. Differences between organisms were observed, but there were no general differences found between yeast and bacteria. In addition, growth conditions were found to have an effect on disruption with cells grown at a high specific growth rate easier to disrupt than cells grown at a low rate.Nomenclature a exponent of pressure (dimensionless) - D dilution rate (h\s-1) - K dimensional rate constant (Pa \s-) - N number of passes (dimensionless) - P operating pressure (Pa) - R fraction of cells disrupted (dimensionless) - um maximum specific growth rate (h\s-1)  相似文献   

11.
Recovery of the intracellular bioplastic poly(β-hydroxybutyric acid) or PHB from fed-batch cultured Alcaligenes latus, ATCC 29713, was examined using combinations of chemical and mechanical treatments to disrupt the cells. Chemical pretreatments used sodium chloride and sodium hydroxide. For salt pretreatment the cells were exposed to NaCl (8?kg?m?3) and heat (60?°C, 1 h), cooled to 4?°C, and mechanically disrupted. For alkaline treatments, the cells were exposed to sodium hydroxide (0.025–0.8 kg?NaOH per kg biomass) and mechanically disrupted at ambient temperature. A combined treatment with sodium chloride (8 kg m?3), heat (60?°C, 1 h), and alkaline pH shock (pH 11.5, 1?min) was also tested. Mechanical disruption employed a continuous flow bead mill (2,800 rpm agitation speed, 90?ml?min?1 slurry flow rate, 512 m mean bead diameter, bead loadings of 80% or 85% of chamber volume). Disruption was quantified by protein release. Over most of the disruption period, the release of PHB was approximately proportional to protein release. Regardless of the pretreatment or bead load, the disruption obeyed first order kinetics; hence, the rate of protein release was directly proportional to the amount of unreleased protein. Relative to untreated biomass, pretreatment always produced earlier protein release during milling. Pretreatment with a minimum of 0.12?kg NaOH per kg biomass was necessary to enable complete disruption within three passes (85% bead load). Untreated biomass required more than twice as many passes. Irrespective of the chemical pretreatment, the bead loading strongly influenced the disruption rate which was higher at the higher loading. Alkaline hydrolysis associated PHB loss was observed, but it could be limited to insignificant levels by immediate neutralization of disrupted homogenates.  相似文献   

12.
Botryococcus braunii is a microalga considered for biofuel production and may require physical disruption of cells/colonies for efficient hydrocarbon extraction. In this study, the strength of individual cells of B. braunii was measured using a nanoindenter. From the load and cell size, the pressure for bursting the cell was calculated to be 56.9 MPa. This value is 2.3–10 times those of Saccharomyces cerevisiae and Chlorella vulgaris found in another research, because B. braunii has two types of cell walls with different thicknesses. The energy required to disrupt 1 g of dry B. braunii cells, estimated by load-displacement curves, is 3.19 J g?1 which is 0.19–1.2 times higher than those of S. cerevisiae and C. vulgaris. When using a high-pressure homogenizer for disrupting B. braunii cells, the cell disruption degree increased with the treatment pressure at above 30 MPa, and 70% of cells were disrupted at 80 MPa.  相似文献   

13.
An on-line cell disruption system for at-line monitoring of the intracellular concentration of recombinant human superoxide dismutase (rhSOD) in a genetically modified Escherichia coli strain, HMS174(DE3) (pET11a/rhSOD), in bioreactor cultivations is described. The sampled bacteria were disrupted on-line by rapid mixing with a nonionic detergent. The recombinant protein content of the lysed bacterial sample was quantitated by a subsequent surface plasmon resonance biosensor with a specific monoclonal antibody. Extraction efficiency of the monitoring system was optimized with respect to the flow rate ratio of the cell suspension and the detergent at relevant cell densities with the aim to attain rapid monitoring. Monitoring was demonstrated for a shake flask culture and a glucose-limited fed-batch cultivation. The results are compared with a traditional enzyme-linked immunosorbent assay method showing a correlation coefficient of R2 = 0.97. Extraction efficiency of rhSOD reached 95-99% at a total processing time of 1.8-2.6 min and a contact time of 0.8-1.4 min. The possibility of extending the monitoring system to other intracellular proteins is discussed.  相似文献   

14.
In previous work a model was proposed for estimation of disruption of animal cells in turbulent capillary flows using information about the hydrodynamics, and cell mechanical properties determined by micromanipulation. The model assumed that the capillary flow consists of a laminar sublayer and a homogeneous turbulent region, and within the latter eddies of sizes similar to or smaller than the cells interact with those cells, causing local surface deformations. The proposed mechanism of cell damage was that such deformations result in an increase in membrane tension and surface energy, and that a cell disrupts when its bursting membrane tension and bursting surface energy are exceeded. The surface energy of the cells was estimated from the kinetic energy of appropriate sized eddies. To test the model, cells were disrupted in turbulent flows in capillaries at mean energy dissipation rates ranging from 800 to 2×104 Wkg–1. The model assumed that the specific lysis rate is almost independent of the number of passes, which was verified by the experimental data. The implication was that despite the damage the cell mechanical properties did not change markedly during multiple recirculations through the capillaries. On average the model underestimated the cell disruption by about 15%. Although the model gave reasonably good predictions, it lacks proper explanation of the independence of the specific lysis rate on the number of passes. In this paper it is shown that this problem can be resolved in principle by consideration of the localisation of the energy dissipation in turbulent capillary flows. The necessity of further modelling of cell-turbulence interactions is demonstrated.  相似文献   

15.
The physiology of the deep-sea hyperthermophilic, anaerobic vent archaeon Pyrococcus abyssi, originating from the Fiji Basin at a depth of 2,000 m, was studied under diverse conditions. The emphasis of these studies lay in the growth and survival of this archaeon under the different conditions present in the natural habitat. Incubation under in situ pressure (20 MPa) and at 40 MPa increased the maximal and minimal growth temperatures by 4(deg)C. In situ pressure enhanced survival at a lethal high temperature (106 to 112(deg)C) relative to that at low pressure (0.3 MPa). The whole-cell protein profile, analyzed by one-dimensional sodium dodecyl sulfate gel electrophoresis, did not change in cultures grown under low or high pressure at optimal and minimal growth temperatures, but several changes were observed at the maximal growth temperature under in situ pressure. The complex lipid pattern of P. abyssi grown under in situ and 0.1- to 0.5-MPa pressures at different temperatures was analyzed by thin-layer chromatography. The phospholipids became more complex at a low growth temperature at both pressures but their profiles were not superimposable; fewer differences were observed in the core lipids. The polar lipids were composed of only one phospholipid in cells grown under in situ pressure at high temperatures. Survival in the presence of oxygen and under starvation conditions was examined. Oxygen was toxic to P. abyssi at growth range temperature, but the strain survived for several weeks at 4(deg)C. The strain was not affected by starvation in a minimal medium for at least 1 month at 4(deg)C and only minimally affected at 95(deg)C for several days. Cells were more resistant to oxygen in starvation medium. A drastic change in protein profile, depending on incubation time, was observed in cells when starved at growth temperature.  相似文献   

16.
Spores of Bacillus anthracis are known to be extremely resistant to heat treatment, irradiation, desiccation, and disinfectants. To determine inactivation kinetics of spores by high pressure, B. anthracis spores of a Sterne strain-derived mutant deficient in the production of the toxin components (strain RP42) were exposed to pressures ranging from 280 to 500 MPa for 10 min to 6 h, combined with temperatures ranging from 20 to 75 degrees C. The combination of heat and pressure resulted in complete destruction of B. anthracis spores, with a D value (exposure time for 90% inactivation of the spore population) of approximately 4 min after pressurization at 500 MPa and 75 degrees C, compared to 160 min at 500 MPa and 20 degrees C and 348 min at atmospheric pressure (0.1 MPa) and 75 degrees C. The use of high pressure for spore inactivation represents a considerable improvement over other available methods of spore inactivation and could be of interest for antigenic spore preparation.  相似文献   

17.
A new piezotolerant alkane‐degrading bacterium (Marinobacter hydrocarbonoclasticus strain #5) was isolated from deep (3475 m) Mediterranean seawater and grown at atmospheric pressure (0.1 MPa) and at 35 MPa with hexadecane as sole source of carbon and energy. Modification of the hydrostatic pressure influenced neither the growth rate nor the amount of degraded hexadecane (≈ 90%) during 13 days of incubation. However, the lipid composition of the cells sharply differed under both pressure conditions. At 0.1 MPa, M. hydrocarbonoclasticus #5 biosynthesized large amounts (≈ 62% of the total cellular lipids) of hexadecane‐derived wax esters (WEs), which accumulated in the cells under the form of individual lipid bodies. Intracellular WEs were also synthesized at 35 MPa, but their proportion was half that at 0.1 MPa. This lower WE content at high pressure was balanced by an increase in the total cellular phospholipid content. The chemical composition of WEs formed under both pressure conditions also strongly differed. Saturated WEs were preferentially formed at 0.1 MPa whereas diunsaturated WEs dominated at 35 MPa. This increase of the unsaturation ratio of WEs resembled the one classically observed for bacterial membrane lipid homeostasis. Remarkably, the unsaturation ratio of membrane fatty acids of M. hydrocarbonoclasticus grown at 35 MPa was only slightly higher than at 0.1 MPa. Overall, the results suggest that intracellular WEs and phospholipids play complementary roles in the physiological adaptation of strain #5 to different hydrostatic pressures.  相似文献   

18.
大肠杆菌莽草酸途径限速酶多基因盒的构建及基因替换   总被引:2,自引:0,他引:2  
优化大肠杆菌芳香族氨基酸生物合成代谢途径 ,构建莽草酸代谢途径限速酶的多基因盒PtacaroAaroCaroBkan .利用Red重组系统 ,在破坏整体调控基因csrA时 ,替换多基因盒 .Southern印迹证实 ,基因破坏和基因替换是成功的 .摇瓶发酵表明 ,构建的基因工程菌株比原始菌株基础产酸率提高了 4 5 3倍  相似文献   

19.
Summary The release of chloramphenicol acetyl transferase (CAT) from a recombinant Escherichia coli strain by ultrasonication and the French press was compared. French pressing disrupted all cells in suspension whereas only a fraction of the cells was disrupted following sonication. The level of CAT released was highest when cells were totally disrupted. Additional treatment with the detergent Triton X-100 was necessary to maximize CAT recovery, presumably due to association of CAT with cellular debris.  相似文献   

20.
Hydrodynamic cavitation results in flow restriction in a flow system causing rapid pressure fluctuations and significant fluid forces. These can be harnessed to mediate microbial cell damage. Hydrodynamic cavitation was studied for the partial disruption of E. coli and selective release of specific proteins relative to the total soluble protein. The effects of the cavitation number, the number of passes, and the specific growth rate of E. coli on the release of periplasmic and cytoplasmic proteins were studied. At the optimum cavitation number of 0.17 for this experimental configuration, 48% of the total soluble protein, 88% of acid phosphatase, and 67% of beta-galactosidase were released by hydrodynamic cavitation in comparison with the maximum release attained using multiple passes through the French Press. The higher release of the acid phosphatase over the total soluble protein suggested preferred release of periplasmic compounds. This was supported by SDS-PAGE analysis. The absence of micronization of cell material resulting in the potential for ease of solid-liquid separation downstream of the cell disruption operation was confirmed by TEM microscopy. E. coli cells cultivated at a higher specific growth rate (0.36 h(-1)) were more easily disrupted than slower grown cells (0.11 h(-1)). The specific activity of the enzyme of interest released by hydrodynamic cavitation, defined as the units of enzyme in solution per milligram of total soluble protein, was greater than that obtained on release by the French Press, high-pressure homogenization, osmotic shock, and EDTA treatment. The selectivity offered indicates the potential of enzyme release by hydrodynamic cavitation to ease the purification in the subsequent downstream processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号