首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Transport of organic cations by a renal epithelial cell line (OK)   总被引:1,自引:0,他引:1  
The goal of this study was to determine the mechanisms involved in the transport of the organic cation, tetraethylammonium (TEA), across the apical membrane of OK cells. [14C]TEA accumulated in OK cell monolayers reaching equilibrium in 2 h. The uptake of [14C]TEA at equilibrium was dependent upon temperature and was inhibited by sodium azide and by various organic cations, including N1-methylnicotinamide (NMN), mepiperphenidol, and cimetidine but not by the organic anion, p-aminohippuric acid. The initial uptake of [14C]TEA was characterized by a saturable process. The mean +/- S.D. Km was 27.8 +/- 2.6 microM and the Vmax was 414 +/- 26.5 pmol/mg protein/min. Both an accelerated efflux and influx of [14C]TEA in the presence of a trans-gradient of unlabeled TEA and NMN was observed, whereas a deaccelerated influx and efflux was observed in the presence of a trans-gradient of mepiperphenidol. The mechanism of interaction between NMN and TEA was examined. NMN significantly increased the apparent Km (mean +/- S.D.) of TEA to 82.8 +/- 16.4 microM (p less than 0.001), whereas the Vmax (mean +/- S.D.) was only slightly affected (478 +/- 72 pmol/mg protein/min) suggesting a competitive inhibition. The stimulatory effect of trans-gradients of NMN on TEA transport was due to an increase in the Vmax of TEA suggesting that NMN trans-stimulates TEA transport by increasing the turnover rate of the exchanger. In the presence of an inwardly directed proton gradient, the efflux at 30 s of [14C]TEA from the OK cell monolayers was significantly accelerated (p less than 0.05). Studies with the pH-sensitive fluorescent probe, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, suggested that TEA could drive the countertransport of protons. In apical membrane vesicles prepared from OK cells, the uptake of [3H]NMN exhibited an apparent "overshoot phenomenon" in the presence of an initial outwardly directed proton gradient. Protons competitively inhibited TEA uptake suggesting that the proton/organic cation and the organic cation/organic cation self exchange mechanism are the same mechanism. This is the first report describing both TEA self-exchange and proton/TEA exchange in the apical membrane of a continuous cell line. OK cells are an excellent model for the study of organic cation transport across the apical membrane.  相似文献   

2.
Organometals, including organomercurials, are capable of mediating Cl-/OH- exchange across lipid membranes by forming neutral ion pairs. In this study, the ability of inorganic metals to catalyze Cl-/OH- exchange was examined. In the presence of an inwardly directed chloride gradient, HgCl2 at concentrations as low as 30 nM resulted in quenching of acridine orange fluorescence in liposomes, indicating liposomal acidification. In the presence of the reducing agent, ascorbate, CuSO4 at concentrations as low as 0.6 microM also mediated chloride-dependent liposomal acidification. Copper in the absence of ascorbate, iron (with or without ascorbate), cobalt, cadmium, zinc, nickel, and lead were without an effect. 36Cl efflux from rabbit renal brush border membrane vesicles was also markedly stimulated by micromolar concentrations of mercury or copper plus ascorbate. Vesicle integrity was not altered by the concentrations of mercury or copper employed in these studies. In the absence of ascorbate, CuCl stimulated chloride efflux only under anaerobic conditions, confirming that it is the reduced form of copper (Cu+) that mediates chloride transport across the membrane. In the presence of mercury or reduced copper, an inside alkaline pH gradient stimulated the uphill accumulation of 36Cl and 82Br, respectively, confirming Cl-/OH- exchange. Studies in liposomes and brush border membranes demonstrate that this is an electroneutral process. These results show that Hg2+ and Cu+ are capable of acting as ionophores, mediating electroneutral Cl-/OH- exchange in liposomes and brush border membrane vesicles. This effect could contribute to the toxicity of these two metals.  相似文献   

3.
The kinetic basis for trans-effects of intravesicular substrates on the uptake of the organic cation, tetraethylammonium (TEA), into rabbit renal brush-border membrane vesicles (BBMV) was studied. Preloading BBMV with 1, 2, or 4 mM TEA stimulated the initial rate of uptake and the total net accumulation of 0.1 mM [3H]TEA. The stimulatory effect of intravesicular TEA on the initial rate of uptake was a saturable function of the trans-TEA concentration, with a half-maximal effect noted at an intravesicular concentration of 0.28 mM. A 1 mM trans-concentration of TEA increased the Jmax of [3H]TEA uptake (from 4.3 to 6.8 nmol.mg-1.min-1) without affecting the apparent Kt. An outwardly directed H+ gradient also increased Jmax (to 10.7 nmol.mg-1.min-1), although the addition of an outwardly directed TEA gradient did not produce further increases in the rate of TEA uptake. External H+ acted as a competitive inhibitor of TEA uptake, and an increase in external [H+] (from 32 nM to 100 nM) produced an increase in the apparent Kt for TEA transport (from 0.12 to 0.26 mM) without affecting the Jmax. The results suggested that TEA and H+ compete for a common site or set of mutually exclusive sites on the cytoplasmic and luminal aspects of TEA/H+ exchanger in the renal brush border, and that these sites have a similar affinity for TEA.  相似文献   

4.
The interaction of 5-(N-methyl-N-isobutyl)amiloride (MIBA) with brush-border membrane vesicles isolated from normal human term placentas was investigated using two parameters: binding and transport. The binding of MIBA to placental membranes was specific and temperature- and pH-dependent, and the apparent dissociation constant (Kd) for the process was 58 +/- 2 microM. The binding was inhibited by other amiloride analogs and also by clonidine and cimetidine with a rank order potency: MIBA > benzamil > dimethylamiloride > amiloride > clonidine > cimetidine. These compounds also inhibited Na(+)-H+ exchanger activity in these membrane vesicles, but with a different order of potency: dimethylamiloride > MIBA > amiloride > benzamil > cimetidine > clonidine. The membrane vesicles were also able to transport MIBA into the intravesicular space, and the transport was stimulated many-fold by the presence of an outwardly directed H+ gradient across the membrane. The H+ gradient was the driving force for uphill accumulation of MIBA inside the vesicles. The transport process was electrically silent. The transport of MIBA was inhibited by other amiloride analogs and by clonidine and cimetidine, and the order of potency was the same as the order with which these compounds inhibited the binding of MIBA. The Michaelis-Menten constant (Kt) for the transport process was 46 +/- 2 microM. The binding as well as the transport were also inhibited by Na+ and Li+. Interestingly, tetraethylammonium and N1-methylnicotinamide, two of the commonly used substrates in organic cation transport studies, failed to inhibit the binding and transport of MIBA. Furthermore, although the outwardly directed H+ gradient-dependent uphill transport of tetraethylammonium could be demonstrated in renal brush-border membrane vesicles, there was no evidence for the presence of a transport system for this prototypical organic cation in placental brush-border membrane vesicles. It is concluded that the human placental brush-border membranes possess an organic cation-proton antiporter which accepts MIBA as a substrate, the low affinity binding site for MIBA observed in these membranes represents this antiporter, and that the placental organic cation-proton antiporter is distinct from the widely studied renal organic cation-proton antiporter.  相似文献   

5.
We have previously shown that Na(+)-H(+) exchanger isoform NHE3 exists as both 9.6 and 21 S (megalin-associated) oligomers in the renal brush border. To characterize the oligomeric forms of the renal brush border Na(+)-H(+) exchanger in more detail, we performed membrane fractionation studies. We found that similar amounts of NHE3 were present in microvilli and a nonmicrovillar membrane domain of high density (dense vesicles). Horseradish peroxidase-labeled endosomes were not prevalent in the dense membrane fraction. However, megalin, which localizes primarily to the intermicrovillar microdomain of the brush border, was enriched in the dense vesicles, implicating this microdomain as the likely source of these membranes. Immunolocalization of NHE3 confirmed that a major fraction of the transporter colocalized with megalin in the intermicrovillar region of the brush border. Immunoprecipitation studies demonstrated that in microvilli the majority of NHE3 was not bound to megalin, while in the dense vesicles most of the NHE3 coprecipitated with megalin. Moreover, sucrose velocity gradient centrifugation experiments revealed that most NHE3 in microvilli sedimented with an S value of 9.6, while the S value of NHE3 in dense vesicles was 21. Finally, we examined the functional state of NHE3 in both membrane fractions. As assayed by changes in acridine orange fluorescence, imposing an outwardly directed Na(+) gradient caused generation of an inside acid pH gradient in the microvilli, indicating Na(+)-H(+) exchange activity, but not in the dense vesicles. Taken together, these data demonstrate that renal brush border NHE3 exists in two oligomeric states: a 9.6 S active form present in microvilli and a 21 S, megalin-associated, inactive form in the intermicrovillar microdomain of the apical plasma membrane. Thus, regulation of renal brush border Na(+)-H(+) exchange activity may be mediated by shifting the distribution between these forms of NHE3.  相似文献   

6.
H Murer  U Hopfer    R Kinne 《The Biochemical journal》1976,154(3):597-604
Studies on proton and Na+ transport by isolated intestinal and renal brush-border-membrane vesicles were carried out to test for the presence of an Na+/H+-exchange system. Proton transport was evaluated as proton transfer from the intravesicular space to the incubation medium by monitoring pH changes in the membrane suspension induced by sudden addition of cations. Na+ transport was determined as Na+ uptake into the vesicles by filtration technique. A sudden addition of sodium salts (but not choline) to the membrane suspension provokes an acidification of the incubation medium which is abolished by the addition of 0.5% Triton X-100. Pretreatment of the membranes with Triton X-100 prevents the acidification. The acidification is also not observed if the [K+] and proton conductance of the membranes have been increased by the simultaneous addition of valinomycin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone to the K+-rich incubation medium. Either valinomycin or carbonyl cyanide p-trifluoromethoxyphenylhydrazone when added alone do not alter the response of the membranes to the addition of Na+. Na+ uptake by brush-border microvilli is enhanced in the presence of a proton gradient directed from the intravesicular space to the incubation medium. Under these conditions a transient accumulation of Na+ inside the vesicles is observed. It is concluded that intestinal and renal brush-border membranes contain a NA+/H+ antiport system which catalyses an electroneutral exchange of Na+ against protons and consequently can produce a proton gradient in the presence of a concentration difference for Na+. This system might be involved in the active proton secretion of the small intestine and the proximal tubule of the kidney.  相似文献   

7.
The uptake of the basic amino acid, L-lysine, was studied in brush border membrane vesicles isolated from the kidney of the striped mullet (Mugil cephalus). The uptake of L-lysine was not significantly stimulated by a Na+ gradient and no overshoot was observed. However, when a proton gradient (pHo = 5.5; pHi = 8.3) was imposed across the membrane in the absence of Na+, uptake was transiently stimulated. When the proton gradient was short circuited by the proton ionophore, carbonylcyanide p-triflouromethoxyphenyl hydrazone, proton gradient-dependent uptake of lysine was inhibited. Kinetics of lysine uptake determined under equilibrium exchange conditions indicated that the Vmax increased as available protons increased (2.1 nmol/min/mg protein at pH 7.5 to 3.7 nmol/min/mg at pH 5.5), whereas the apparent Km (4.9 +/- 0.6 mM) was not altered appreciably. When membrane potential (inside negative) was imposed by K+ diffusion via valinomycin, a similar (but smaller) stimulation of lysine uptake was observed. When the membrane potential and the proton gradient were imposed simultaneously, a much higher stimulation in lysine uptake was shown, and the uptake of lysine was approximately the sum of the components measured separately. These results indicate that the uptake mechanism for basic amino acids is different from that of neutral or acidic amino acids and that the proton-motive force can provide the driving force for the uptake of L-lysine into the isolated brush border membrane vesicles.  相似文献   

8.
We had previously proposed that organic cations are transported across the brush-border membrane in the canine kidney by a H+ exchange (or antiport) system (Holohan, P.D. and Ross, C.R. (1981) J. Pharmacol. Exp. Ther. 216, 294-298). In the present report, we demonstrate that in brush-border membrane vesicles the transport of organic cations is chemically coupled to the countertransport of protons, by showing that the uphill or concentrative transport of a prototypic organic cation, N1-methylnicotinamide (NMN), is chemically coupled to the flow of protons down their chemical gradient. In a reciprocal manner, the concentrative transport of protons is coupled to the counterflow of organic cations down their concentration gradient. The transport of organic cations is monitored by measuring [3H]NMN while the transport of protons is monitored by measuring changes in acridine orange absorbance. The functional significance of the coupling is that a proton gradient lowers the Km and increases the Vmax for NMN transport.  相似文献   

9.
The purpose of this study was to characterize the renal uptake properties of the cytidine analog and antiretroviral agent 3TC. The uptake of radiolabelled 3TC was measured at 37 degrees C in a continuous porcine renal epithelial cell line (i.e., LLC-PK1 cells) grown as a monolayer on an impermeable support. 3TC (5 microM) uptake (37 degrees C) by the monolayer cells was saturable (Km = 1.2 +/- 0.2 mM) but not significantly altered by various dideoxynucleoside analog drugs, nucleosides, and nucleoside transport inhibitors, suggesting that a nucleoside transporter is not involved in 3TC uptake. A number of endogenous organic cation probes and inhibitors significantly reduced 3TC uptake by the monolayer cells. Quinine, trimethoprim (TMP), and tetraethylammonium (TEA) inhibited 3TC uptake in a dose dependent manner with IC50 values of 0.6 mM, 0.63 mM, and 1.9 mM, respectively. In turn, the uptake of the typical organic cation substrate TEA was inhibited by high concentrations of 3TC. An outwardly directed proton gradient significantly increased the uptake of 3TC by the monolayer cells, suggesting the involvement of a proton exchange process. Conversely, in the presence of monensin, a Na+/H+ ionophore, the uptake of 3TC was significantly reduced. These results suggest that the uptake of 3TC by a cultured renal epithelium may be mediated by an organic cation-proton exchanger. The observed clinical interaction between 3TC and trimethoprim may be explained by competition for a common renal organic cation tubular transporter.  相似文献   

10.
G Lipka  J A Op den Kamp  H Hauser 《Biochemistry》1991,30(51):11828-11836
All classes of phospholipids present in brush border membrane are exchanged in a 1:1 ratio for egg phosphatidylcholine when brush border membrane vesicles from rabbit small intestine are incubated with small unilamellar vesicles of egg phosphatidylcholine. The exchange reaction exhibits biphasic kinetics similar to those of the hydrolysis of brush border membrane phospholipids by phospholipase A2 and sphingomyelinase C. In both reactions there is an initial fast phase followed by a markedly slower one. The phospholipid exchange appears to be catalyzed by intrinsic brush border membrane protein(s), while the digestion by phospholipases is mediated by externally added enzymes. From a comparison of the kinetics of phospholipid exchange and phospholipid hydrolysis, the following conclusions can be drawn: Both sets of experiments indicate the presence of two phospholipid pools differing in the rate of phospholipid exchange and hydrolysis. Except for sphingomyelin, the size of the two phospholipid pools derived from phospholipid exchange is in good agreement with that derived from phospholipid hydrolysis. This is the main finding of this work, and on the basis of this result the two lipid pools are tentatively assigned to phospholipid molecules located on the outer and inner layer of the brush border membrane. The slow rate of phospholipid exchange reflects the rate of transverse or flip-flop movement of phospholipids. The half-time of this motion is approximately 8 h for isoelectric (neutral) phospholipids such as phosphatidylethanolamine and approximately 80 h for negatively charged phosphatidylserine and phosphatidylinositol. Isoelectric phospholipids (phosphatidylcholine, phosphatidylethanolamine) are preferentially located on the inner (cytoplasmic) side (to about 70%) while the negatively charged phospholipids are more evenly distributed: 55-60% are located on the inner side.  相似文献   

11.
Summary This review describes the uptake of L-glutamate by well-characterized preparations of renal brush border (luminal) and baso-lateral membrane vesicles derived from the plasma membrane of the polar proximal tubular cell. L-glutamate is taken up against its concentration gradient, from both sides, by co-transport systems in which the movement of the amino acid into the cell is coupled to the influx of Na+ and efflux of K+ down their respective electrochemical gradients. The presence of these ion gradient-energized systems, specific for L-glutamate, may account for the exceedingly high intracellular concentration of this metabolically important amino acid in the renal tubule.  相似文献   

12.
Folate reabsorption by the mammalian kidney occurs following a tight binding reaction with the renal brush border membrane. Previous studies have shown that transport of folic acid (PteGlu) by rat kidney brush border membrane vesicles occurs maximally at pH 5.6 via a saturable system that is associated with a binding component. The present studies have shown that the pH dependency of transport was due to the development of the transmembrane pH gradient (7.3 in/5.6 out), not to the acidic pH per se. The pH gradient-mediated transport was stimulated by an inwardly directed ionic gradient, either of NaCl or choline chloride. These gradients also stimulated the membrane binding of PteGlu suggesting that NaCl and choline chloride may have increased PteGlu transport by altering binding to the brush border membrane. Renal brush border membrane vesicular transport of PteGlu was not affected by induction of a relatively positive intravesicular space. Transport was inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene, an anion exchange inhibitor. The results suggest that rat kidney brush border membrane transport of PteGlu is initiated by association with a specific membrane protein, followed by transfer of folate across the membrane. The overall activity is influenced by a transmembrane pH gradient.  相似文献   

13.
The uptake of L-phenylalanine into brush border microvilli vesicles and basolateral plasma membrane vesicles isolated from rat kidney cortex by differential centrifugation and free flow electrophoresis was investigated using filtration techniques. Brush border microvilli but not basolateral plasma membrane vesicles take up L-phenylalanine by an Na+-dependent, saturable transport system. The apparent affinity of the transport system for L-phenylalanine is 6.1 mM at 100 mM Na+ and for Na+ 13mM at 1 mM L-phenylalanine. Reduction of the Na+ concentration reduces the apparent affinity of the transport system for L-phenylalanine but does not alter the maximum velocity. In the presence of an electrochemical potential difference of Na+ across the membrane (etaNao greater than etaNai) the brush border microvilli accumulate transiently L-phenylalanine over the concentration in the incubation medium (overshoot pheomenon). This overshoot and the initial rate of uptake are markedly increased when the intravesicular space is rendered electrically more negative by membrane diffusion potentials induced by the use of highly permeant anions, of valinomycin in the presence of an outwardly directed K+ gradient and of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence of an outward-directed proton gradient. These results indicate that the entry of L-phenylalanine across the brush border membrane into the proximal tubular epithelial cells involves cotransport with Na+ and is dependent on the concentration difference of the amino acid, on the concentration difference of Na+ and on the electrical potential difference. The exit of L-phenylalanine across the basolateral plasma membranes is Na+-independent and probably involves facilitated diffusion.  相似文献   

14.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

15.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

16.
The Na+-dependent transport of D-glucose was studied in brush border membrane vesicles isolated from the rabbit renal cortex. The presence of a Na+ gradient between the external incubation medium and the intravesicular medium induced a marked stimulation of D-glucose uptake. Accumulation of the sugar in the vesicles reached a maximum and then decreased, indicating efflux. The final level of uptake of the sugar in the presence of the Na+ gradient was identical with that attained in the absence of the gradient, suggesting that equilibrium was established. At the peak of the overshoot the uptake of D-glucose was more than 10-fold the equilibrium value. These results suggest that the imposition of a large extravesicular to intravesicular gradient of Na+ effects the transient movement of D-glucose into renal brush border membranes against its concentration gradient. The stimulation of D-glucose uptake into the membranes was specific for Na+. The rate of uptake was enhanced with increased concentration of Na+. Increasing Na+ in the external medium lowered the apparent Km for D-glucose. The Na+ gradient effect on D-glucose transport was dissected into a stimulatory effect when Na+ and sugar were on the same side of the membrane (cis stimulation) and an inhibitory effect when Na+ and sugar were on opposite sides of the membrane (trans inhibition). The uptake of D-glucose, at a given concentration of sugar, reflected the sum of the contributions from a Na+-dependent transport system and a Na+-independent system. The relative stimulation of D-glucose uptake by Na+ decreased as the sugar concentration increased. It is suggested, however, that at physiological concentrations of D-glucose the asymmetry of Na+ across the brush border membrane might fully account for uphill D-glucose transport. The physiological significance of the findings is enhanced additionally by observations that the Na+-dependent D-glucose transport system in the membranes in vitro possessed the sugar specificities and higg phlorizin sensitivity characteristic of more intact preparations. These results provide strong experimental evidence for the role of Na+ in transporting D-glucose across the renal proximal tubule luminal membrane.  相似文献   

17.
Uptake of guanidine, an endogenous organic cation, into brush-border membrane vesicles isolated from human term placentas was investigated. Initial uptake rates were manyfold greater in the presence of an outward-directed H+ gradient ([pH]o greater than [pH]i) than in the absence of a H+ gradient ([pH]o = [pH]i). Guanidine was transiently accumulated inside the vesicles against a concentration gradient in the presence of the H+ gradient. The H+ gradient-dependent stimulation of guanidine uptake was not due to a H+-diffusion potential because an ionophore (valinomycin or carbonylcyanide p-trifluoromethoxyphenylhydrazone)-induced inside-negative membrane potential failed to stimulate the uptake. In addition, uphill transport of guanidine could be demonstrated even in voltage-clamped membrane vesicles. The H+ gradient-dependent uptake of guanidine was inhibited by many exogenous as well as endogenous organic cations (cis-inhibition) but not by cationic amino acids. The presence of unlabeled guanidine inside the vesicles stimulated the uptake of labeled guanidine (trans-stimulation). These data provide evidence for the presence of an organic cation-proton antiporter in human placental brush-border membranes. Kinetic analysis of guanidine uptake demonstrated that the uptake occurred via two saturable, carrier-mediated transport systems, one being a high affinity, low capacity type and the other a low affinity, high capacity type. Studies on the effects of various cations on the organic cation-proton antiporter and the Na+-H+ exchanger revealed that these two transport systems are distinct.  相似文献   

18.
The effect of N-ethylmaleimide (NEM), an irreversible sulfhydryl modifying reagent, on the transport of organic cations in the renal basolateral membrane was examined. The studies were conducted examining the exchange of [3H]tetraethylammonium (TEA) for unlabeled TEA in basolateral membrane vesicles isolated from the outer cortex of rabbit kidneys. NEM inactivated TEA transport in a dose-dependent fashion with an IC50 value of 260 microM. The rate of TEA transport inactivation followed apparent pseudo-first-order reaction kinetics. A replot of the data gave a linear relationship between the apparent rate constants and the NEM concentration with a slope of 4.0. The data imply that inactivation involves the binding of at least four molecules of NEM per active transport unit. This is most consistent with the presence of four sulfhydryl groups at this site. The substrate TEA displayed a dose-dependent enhancement of NEM inactivation, with 50% enhancement occurring at 365 microM TEA. Another organic cation, N1-methylnicotinamide, known to share a common transport mechanism with the TEA/TEA exchanger is also capable of increasing the reactivity of sulfhydryl groups to NEM. These results demonstrate that there are essential sulfhydryl groups for organic cation transport in the basolateral membrane. In addition, the capability of organic cations to alter the susceptibility to sulfhydryl modification suggests that these groups may have a dynamic role in the transport process.  相似文献   

19.
We had previously proposed that organic cations are transported across the brush-border membrane in the canine kidney by a H+ exchange (or antiport) system (Holohan, P.D. and Ross, C.R. (1981) J. Pharmacol. Exp. Ther. 216, 294–298). In the present report, we demonstrate that in brush-border membrane vesicles the transport of organic cations is chemically coupled to the countertransport of protons, by showing that the uphill or concentrative transport of a prototypic organic cation, N1-methylnicotinamide (NMN), is chemically coupled to the flow of protons down their chemical gradient. In a reciprocal manner, the concentrative transport of protons is coupled to the counterflow of organic cations down their concentration gradient. The transport of organic cations is monitored by measuring [3H]NMN while the transport of protons is monitored by measuring changes in acridine orange absorbance. The functional significance of the coupling is that a proton gradient lowers the Km and increases the Vmax for NMN transport.  相似文献   

20.
The transport of d-glucose by brush border membranes isolated from the rabbit renal cortex was studied. At concentrations less than 2 mM, the rate of d-glucose uptake increased linearly with the concentration of the sugar. No evidence was found for a “high-affinity” (μM) saturable site. Saturation was indicated at concentrations of d-glucose greater than 5 mM. The uptake of d-glucose was stereospecific and selectively inhibited by d-galactose and other sugars. Phlorizin inhibited the uptake of d-glucose in the presence and absence of Na+. The glycoside was a potent inhibitor of the efflux of d-glucose. Preloading the brush border membrane vesicles with d-glucose, but not with l-glucose, accelerated exchange diffusion of d-glucose. These results demonstrate that the uptake of d-glucose by renal brush borders represents transport into an intravesicular space rather than solely binding. The rate of d-glucose uptake was increased when the Na+ in the extravesicular medium was high and the membranes were preloaded with a Na+-free medium. The rate of d-glucose uptake was inhibited by preloading the brush border membranes with Na+. These results are consistent with the Na+ gradient hypothesis for d-glucose transport in the kidney. Thus, the presence of a Na+-dependent facilitated transport of d-glucose in isolated renal brush border membranes is indicated. This finding is consistent with what is known of the transport of the sugar in more physiologically intact preparations and suggests that the membranes serve as an effective model system in examining the mechanism of d-glucose transport in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号