首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Shedding light on health and disease using molecular beacons.   总被引:2,自引:0,他引:2  
The detection and identification of pathogens is often painstaking due to the low abundance of diseased cells in clinical samples. The genomic sequences of the pathogen can be amplified through methods such as the polymerase chain reaction and nucleic acid sequence-based amplification, but the nucleic acid targets are often lost among other unintended products of amplification. Novel nucleic acid probes known as molecular beacons have been developed allowing for the rapid and specific detection of genetic markers of a disease. Molecular beacons are hairpin-forming oligonucleotides labelled at one end with a quencher and at the other end with a fluorescent reporter dye. In the absence of target, the fluorescence is quenched. In the presence of target, the hairpin structure opens upon beacon/target hybridisation, resulting in the restoration of fluorescence. The ability to transduce target recognition into a fluorescence signal with high signal-to-background ratio, coupled with an improved specificity, has allowed molecular beacons to enjoy a wide range of biological and biomedical applications. Here, we describe the basic features of molecular beacons, review their applications in disease detection and diagnosis and discuss some of the issues and challenges of in vivo studies. The aim of this paper is to foster the development of new molecular beacon-based assays and to stimulate the application of this technology in laboratory and clinical studies of health and disease.  相似文献   

2.
Molecular beacons are a new class of fluorescent probes that can report the presence of specific nucleic acids with high sensitivity and excellent specificity. In addition to their current wide applications in monitoring the progress of polymerase chain reactions, their unique properties make them promising probes for the detection and visualization of target biomolecules in living cells. This article is focused on our recent research in exploring the potential of using molecular beacon for living-cell studies in three important areas: the monitoring of mRNA in living cells, the development of ultrasmall DNA/RNA biosensors, and the novel approach of combining molecular beacon's signal transduction mechanism with aptamer's specificity for real-time protein detection. These applications demonstrate molecular beacon's unique properties in bioanalysis and bioassay development.  相似文献   

3.
Molecular beacons are stem-loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2'-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2'-O-methyl and 2'-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2'-O-methyl/RNA > 2'-deoxy/RNA > 2'-deoxy/DNA > 2'-O-methyl/DNA. The improved stability of the 2'-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2'-deoxy molecular beacons and RNA targets. However, the 2'-O-methyl molecular beacons hybridized to RNA more quickly than 2'-deoxy molecular beacons. For the pairs tested, the 2'-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

4.
A powerful combination of molecular beacon and luminescence resonance energy transfer technology reveals alterations in nucleic acid structure by as little as a single nucleotide in a novel hybridization proximity assay. The assay measures the length of a single-stranded target when a terbium chelate-labeled molecular beacon hybridizes to one side of the nucleic acid segment to be measured and an acceptor probe carrying a convention fluorophore hybridizes to the opposite end of the target. Using a test sequence shortened incrementally by deleting single nucleotides, this assay reports a nearly linear relationship between sequence length and the distance separating acceptor and donor probes. Consequently, this assay can be used to detect alternative splicing, allele types, rearrangements, insertion, and deletion events by measuring separation distances within a predefined region. Furthermore, the use of terbium chelates in molecular beacons can produce exceptionally high signal-to-background ratios compared to the use of conventional fluorophores. Principles of optimal probe design are investigated experimentally and by computational simulations of plausible molecular beacon folding. Some molecular beacon designs form dimers that reduce their maximal response to target sequences. A simple assay to detect such dimers is reported as a tool to help improve the design of molecular beacons. Optimally designed molecular beacons with terbium chelates and hybridization proximity assays are expected to expand their applications in the analysis and screening of genetic diseases.  相似文献   

5.
PNA beacons for duplex DNA   总被引:12,自引:0,他引:12  
We report here on the hybridization of peptide nucleic acid (PNA)-based molecular beacons (MB) directly to duplex DNA sites locally exposed by PNA openers. Two stemless PNA beacons were tested, both featuring the same recognition sequence and fluorophore-quencher pair (Fluorescein and DABCYL, respectively) but differing in arrangement of these groups and net electrostatic charge. It was found that one PNA beacon rapidly hybridized, with the aid of openers, to its complementary target within duplex DNA at ambient conditions via formation of a PD-like loop. In contrast, the other PNA beacon bound more slowly to preopened duplex DNA target and only at elevated temperatures, although it readily hybridized to single-stranded (ss) DNA target. Besides a higher selectivity of hybridization provided by site-specific PNA openers, we expect this approach to be very useful in those MB applications when denaturation of the duplex DNA analytes is unfavorable or undesirable. Furthermore, we show that PNA beacons are advantageous over DNA beacons for analyzing unpurified/nondeproteinized DNA samples. This feature of PNA beacons and our innovative hybridization strategy may find applications in emerging fluorescent DNA diagnostics.  相似文献   

6.
Molecular beacon technology is set up based on fluorescence resonance energy transfer (FRET) and the complementary pairing principles. These fluorescent molecular probes, which are very highly specific and sensitive, have now become one important tool in medical and biological researches. This review introduces the molecular beacons structure, principle, the main impact factors, the labeling of the molecular beacons, and research progress on molecular beacons fluorescent-label in the polymerase chain reaction (PCR), DNA sequence analysis, gene dynamic detection in living cells, protein (enzyme)-nucleic acid interactions and applications in clinical medicine.  相似文献   

7.
Molecular beacons are stem–loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2′-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2′-O-methyl and 2′-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2′-O-methyl/RNA > 2′-deoxy/RNA > 2′-deoxy/DNA > 2′-O-methyl/DNA. The improved stability of the 2′-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2′-deoxy molecular beacons and RNA targets. However, the 2′-O-methyl molecular beacons hybridized to RNA more quickly than 2′-deoxy molecular beacons. For the pairs tested, the 2′-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

8.
We describe a method to monitor rolling-circle replication of circular oligonucleotides in dual-color and in real-time using molecular beacons. The method can be used to study the kinetics of the polymerization reaction and to amplify and quantify circularized oligonucleotide probes in a rolling-circle amplification (RCA) reaction. Modified molecular beacons were made of 2′-O-Me-RNA to prevent 3′ exonucleolytic degradation by the polymerase used. Moreover, the complement of one of the stem sequences of the molecular beacon was included in the RCA products to avoid fluorescence quenching due to inter-molecular hybridization of neighboring molecular beacons hybridizing to the concatemeric polymerization product. The method allows highly accurate quantification of circularized DNA over a broad concentration range by relating the signal from the test DNA circle to an internal reference DNA circle reporting in a distinct fluorescence color.  相似文献   

9.
A DNA hybridization based optical detection platform for the detection of foodborne pathogens has been developed with virtually zero probability of the false negative signal. This portable, low-cost and real-time assaying detection platform utilizes the color changing molecular beacon as a probe for the optical detection of the target sequence. The computer-controlled detection platform exploits the target hybridization induced change of fluorescence color due to the F?rster (fluorescence) resonance energy transfer (FRET) between a pair of spectrally shifted fluorophores conjugated to the opposite ends of a beacon (oligonucleotide probe). Unlike the traditional fluorophore-quencher beacon design, the presence of two fluorescence molecules allows to actively visualize both hybridized and unhybridized states of the beacon. This eliminates false negative signal detection characteristic for the fluorophore-quencher beacon where bleaching of the fluorophore or washout of a beacon is indistinguishable from the absence of the target DNA sequence. In perspective, the two-color design allows also to quantify the concentration of the target DNA in a sample down to < =1 ng/microl. The new design is suitable for simultaneous reliable detection of hundreds of DNA target sequences in one test run using a series of beacons immobilized on a single substrate in a spatial format.  相似文献   

10.
While molecular beacons are primarily known as biosensors for the detection of nucleic acids, it has proven possible to adapt other nucleic acid binding species (aptamers) to function in a manner similar to molecular beacons, yielding fluorescent signals only in the presence of a cognate ligand. Unfortunately, engineering aptamer beacons requires a detailed knowledge of aptamer sequence and structure. In order to develop a general method for the direct selection of aptamer beacons we have first developed a selection method for molecular beacons. A pool of random sequence DNA molecules were immobilized via a capture oligonucleotide on an affinity column, and those variants that could be released from the column by a target oligonucleotide were amplified. After nine rounds of selection and amplification the elution characteristics of the population were greatly improved. A fluorescent reporter in the selected beacons was located adjacent to a DABCYL moiety in the capture oligonucleotide; addition of the target oligonucleotide led to release of the capture oligonucleotide and up to a 17-fold increase in fluorescence. Signaling was specific for the target oligonucleotide, and occurred via a novel mechanism, relative to designed molecular beacons. When the target oligonucleotide is bound it can form a stacked helical junction with an intramolecular hairpin in the selected beacon; formation of the intramolecular hairpin in turn leads to release of the capture oligonucleotide. The ability to select molecular beacons may prove useful for identifying available sites on complex targets, such as mRNAs, while the method for selection can be easily generalized to other, non-nucleic acid target classes.  相似文献   

11.
DNA and peptide nucleic acid (PNA) molecular beacons were successfully used to detect rRNA in solution. In addition, PNA molecular beacon hybridizations were found to be useful for the quantification of rRNA: hybridization signals increased in a linear fashion with the 16S rRNA concentrations used in this experiment (between 0.39 and 25 nM) in the presence of 50 nM PNA MB. DNA and PNA molecular beacons were successfully used to detect whole cells in fluorescence in situ hybridization (FISH) experiments without a wash step. The FISH results with the PNA molecular beacons were superior to those with the DNA molecular beacons: the hybridization kinetics were much faster, the signal-to-noise ratio was much higher, and the specificity was much better for the PNA molecular beacons. Finally, it was demonstrated that the combination of the use of PNA molecular beacons in FISH and flow cytometry makes it possible to rapidly collect quantitative FISH data. Thus, PNA molecular beacons might provide a solution for limitations of traditional FISH methods, such as variable target site accessibility, poor sensitivity for target cells with low rRNA content, background fluorescence, and applications of FISH in microfluidic devices.  相似文献   

12.
Molecular beacons (MBs) are a novel class of nucleic acid probes that become fluorescent when bound to a complementary sequence. Because of this characteristic, coupled with the sequence specificity of nucleic acid hybridization and the sensitivity of fluorescence techniques, MBs are very useful probes for a variety of applications requiring the detection of DNA or RNA. We survey various applications of MBs, including the monitoring of DNA triplex formation, and describe recent developments in MB design that enhance their sensitivity.  相似文献   

13.
Ultrasensitive molecular beacon (MB) DNA biosensors, with micrometer to submicrometer sizes, have been developed for DNA/RNA analysis. The fluorescence-based biosensors have been applied in DNA/ RNA detection without the need for a dye-labeled target molecule or an intercalation reagent in the testing solution. Molecular beacons are hairpin-shaped oligonucleotides that report the presence of specific nucleic acids. We have designed a surface-immobilizable biotinylated ssDNA molecular beacon for DNA hybridization at a liquid-solid interface. The MBs have been immobilized onto ultrasmall optical fiber probes through avidin-biotin binding. The MB DNA biosensor has been used directly to detect, in real time, its target DNA molecules without the need for a competitive assay. The biosensor is stable and reproducible. The MB DNA biosensor has selectivity with single base-pair mismatch identification capability. The concentration detection limits and mass detection limits are 0.3 nM and 15 amol for a 105-microm biosensor, and 10 nM and 0.27 amol for a submicrometer biosensor, respectively. We have also prepared molecular beacon DNA biosensor arrays for simultaneous analysis of multiple DNA sequences in the same solution. The newly developed DNA biosensors have been used for the precise quantification of a specific rat gamma-actin mRNA sequence amplified by the polymerase chain reaction.  相似文献   

14.
DNA and peptide nucleic acid (PNA) molecular beacons were successfully used to detect rRNA in solution. In addition, PNA molecular beacon hybridizations were found to be useful for the quantification of rRNA: hybridization signals increased in a linear fashion with the 16S rRNA concentrations used in this experiment (between 0.39 and 25 nM) in the presence of 50 nM PNA MB. DNA and PNA molecular beacons were successfully used to detect whole cells in fluorescence in situ hybridization (FISH) experiments without a wash step. The FISH results with the PNA molecular beacons were superior to those with the DNA molecular beacons: the hybridization kinetics were much faster, the signal-to-noise ratio was much higher, and the specificity was much better for the PNA molecular beacons. Finally, it was demonstrated that the combination of the use of PNA molecular beacons in FISH and flow cytometry makes it possible to rapidly collect quantitative FISH data. Thus, PNA molecular beacons might provide a solution for limitations of traditional FISH methods, such as variable target site accessibility, poor sensitivity for target cells with low rRNA content, background fluorescence, and applications of FISH in microfluidic devices.  相似文献   

15.
Rapid growth of available sequence data has made the detection of nucleic acids critical to the development of modern life sciences. Many amplification methods based on gold nanoparticles and endonuclease for sensitive DNA detection have been developed. However, these approaches require specific target sequence for endonuclease recognition, which cannot be fulfilled in all systems. Replacing the restriction enzyme with a nuclease that does not require any specific recognition sequence may offer a universally adaptable system. Here we have developed a novel homogeneous, colorimetric DNA detection method, which consists of Exo III, a linker DNA, and two DNA-modified gold nanoparticles. This system is simple, low-cost, sensitive and selective. By coupling cyclic enzymatic cleavage and gold nanoparticle for signal amplification, our system provides a colorimetric detection limit of 15 pM, which is 3 orders of magnitude more sensitive than that of a general three-component sandwich assay format. Due to the intrinsic property of Exo III, our method shows excellent detection selectivity for single-base discrimination. More importantly, superior to other methods based on nicking and FokI endonuclease, our target sequence-independent platform is generally applicable for DNA sensing. This new approach could be widely applied to sensitive nucleic acids detection.  相似文献   

16.
Multivalent circular aptamers or ‘captamers’ have recently been introduced through the merger of aptameric recognition functions with the basic principles of DNA nanotechnology. Aptamers have strong utility as protein-binding motifs for diagnostic applications, where their ease of discovery, thermal stability and low cost make them ideal components for incorporation into targeted protein assays. Here we report upon a property specific to circular DNA aptamers: their intrinsic compatibility with a highly sensitive protein detection method termed the ‘proximity extension’ assay. The circular DNA architecture facilitates the integration of multiple functional elements into a single molecule: aptameric target recognition, nucleic acid hybridization specificity and rolling circle amplification. Successful exploitation of these properties is demonstrated for the molecular analysis of thrombin, with the assay delivering a detection limit nearly three orders of magnitude below the dissociation constants of the two contributing aptamer–thrombin interactions. Real-time signal amplification and detection under isothermal conditions points towards potential clinical applications, with both fluorescent and bioelectronic methods of detection achieved. This application elaborates the pleiotropic properties of circular DNA aptamers beyond the stability, potency and multitargeting characteristics described earlier.  相似文献   

17.
Monroe WT  Haselton FR 《BioTechniques》2003,34(1):68-70, 72-3
A method based on Web-based tools is presented to design optimally functioning molecular beacons. Molecular beacons, fluorogenic hybridization probes, are a powerful tool for the rapid and specific detection of a particular nucleic acid sequence. However, their synthesis costs can be considerable. Since molecular beacon performance is based on its sequence, it is imperative to rationally design an optimal sequence before synthesis. The algorithm presented here uses simple Microsoft Excel formulas and macros to rank candidate sequences. This analysis is carried out using mfold structural predictions along with other free Web-based tools. For smaller laboratories where molecular beacons are not the focus of research, the public domain algorithm described here may be usefully employed to aid in molecular beacon design.  相似文献   

18.
We investigated three probe design strategies used in quantitative polymerase chain reaction (PCR) for sensitivity in detection of the PCR amplicon. A plasmid with a 120-bp insert served as the DNA template. The probes were TaqMan, conventional molecular beacon (MB), and shared-stem molecular beacon (ATssMB and GCssMB). A shared-stem beacon probe combines the properties of a TaqMan probe and a conventional molecular beacon. It was found that the overall sensitivities for the four PCR probes are in the order of MB>ATssMB>GCssMB>TaqMan. The fluorescence quantum yield measurements indicate that incomplete or partial enzymatic cleavage catalyzed by Taq polymerase is the likely cause of the low sensitivities of two shared-stem beacons when compared with the conventional beacon probe. A high-fluorescence background associated with the current TaqMan probe sequence contributes to the relatively low detection sensitivity and signal-to-background ratio. The study points out that the nucleotide environment surrounding the reporting fluorophore can strongly affect the probe performance in real-time PCR.  相似文献   

19.
Traditional methods to assay enzymatic cleavage of DNA are discontinuous and time consuming. In contrast, recently developed fluorescence methods are continuous and convenient. However, no fluorescence method has been developed for single-stranded DNA digestion. Here we introduce a novel method, based on molecular beacons, to assay single-stranded DNA cleavage by single strand-specific nucleases. A molecular beacon, a hairpin-shaped DNA probe labeled with a fluorophore and a quencher, is used as the substrate and enzymatic cleavage leads to fluorescence enhancement in the molecular beacon. This method permits real time detection of DNA cleavage and makes it easy to characterize the activity of DNA nucleases and to study the steady-state cleavage reaction kinetics. The excellent sensitivity, reproducibility and convenience will enable molecular beacons to be widely useful for the study of single-stranded DNA cleaving reactions.  相似文献   

20.
The ability to visualize mRNA in single living cells and monitor in real-time the changes of mRNA level and localization can provide unprecedented opportunities for biological and disease studies. However, the mRNA detection specificity and sensitivity are critically dependent on the selection of target sequences and their accessibility. We carried out an extensive study of the target accessibility of BMP-4 mRNA using 10 different designs of molecular beacons (MBs), and identified the optimal beacon design. Specifically, for MB design 1 and 8 (MB1 and MB8), the fluorescent intensities from BMP-4 mRNA correlated well with the GFP signal after upregulating BMP-4 and co-expressing GFP using adenovirus, and the knockdown of BMP-4 mRNA using siRNA significantly reduced the beacon signals, demonstrating detection specificity. The beacon specificity was further confirmed using blocking RNA and in situ hybridization. We found that fluorescence signal from MBs depends critically on target sequences; the target sequences corresponding to siRNA sites may not be good sites for beacon-based mRNA detection, and vice versa. Possible beacon design rules are identified and approaches for enhancing target accessibility are discussed. This has significant implications to MB design for live cell mRNA detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号