首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Films were prepared from guar gum and locust bean gum galactomannans. In addition, enzymatic modification was applied to guar gum to obtain structurally different galactomannans. Cohesive and flexible films were formed from galactomannans plasticized with 20-60% (w/w of polymer) glycerol or sorbitol. Galactomannans with lower galactose content (locust bean gum, modified guar gum) produced films with higher elongation at break and tensile strength. The mechanical properties of films were improved statistically significantly by decreasing the degree of polymerization of guar gum with mannanase treatments (4 h) of 2 and 10 nkat/g, whereas 50 nkat/g produced films with low elongation at break and tensile strength. Galactomannans with approximately 6 galactose units per 10 mannose backbone units resulted in films with 2 peaks in loss modulus spectra, whereas films from galactomannans with approximately 2 galactose groups per 10 mannose units behaved as a single phase in dynamic mechanical analysis.  相似文献   

2.
The interaction of κ-carrageenan with locust bean gum and dextran has been studied by rheology, differential scanning calorimetry (DSC), and electron spin resonance spectroscopy (ESR). Rheological measurements show that the carrageenan gel characteristics are greatly enhanced in the presence of locust bean gum but not in the presence of dextran. Carrageenan/locust bean gum mixtures show two peaks in the dsc cooling curves. The higher temperature peak corresponds to the temperature of gelation and its intensity increases at the expense of the lower temperature peak as the proportion of locust bean gum in the mixture increases. Furthermore, the DSC heating curves show enhanced broadening when locust bean gum is present, indicating increased aggregation. These results are taken as evidence of carrageenan/locust bean gum association. The gelation process has also been followed by ESR using spin-labeled carrageenan. On cooling carrageenan solutions, an immobile component appears in the ESR spectra signifying a loss of segmental mobility consistent with chain stiffening due to the coil → helix conformational transition and helix aggregation. For carrageenan/locust bean gum mixtures, carrageenan ordering occurs at temperatures corresponding to the higher temperature DSC setting peak and the temperature of gelation. Similar studies using spin-labeled locust bean gum show that its mobility remains virtually unaffected during the gelation process. It is evident, therefore, that carrageenan and locust bean gum interact only weakly. It is proposed that at low carrageenan concentrations the gel network consists of carrageenan helices cross-linked by locust bean gum chains. At high carrageenan concentrations the network is enhanced by the additional self-aggregation of the “excess” carrageenan molecules. For carrageenan/dextran mixtures, only one peak is observed in the dsc cooling curves. The onset of gelation shifts to higher temperatures only at very high (20%) dextran concentrations and this is attributed to volume exclusion effects. Furthermore, there is no enhanced broadening of the peaks in the DSC heating curves as for the carrageenan/locust bean gum systems. It is therefore concluded that carrageenan/dextran association does not occur. The difference in behavior between locust bean gum and dextran is attributed to the greater flexibility of the dextran chains. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The viscoelastic and microstructural influences of 0.1-0.6% locust bean gum on 0.5 or 1.0% κ-carrageenan gels, in different ionic environments, have been studied using small deformation oscillatory measurements and transmission electron microscopy (TEM). The results from the Theological measurements showed synergistic effects in the storage modulus, G', as locust bean gum, of two different mannose to galactose ratios (3 and 5), was mixed with ion-exchanged Na- and Ca-κ-carrageenan, in 0.25 M NaCl and 0.030 M CaC12, respectively. The increase in G' was dependent on the mannose to galactose ratio, polymer concentrations, and ionic environment.

At the supermolecular level, the microstructure of dilute samples has been visualised using low angle rotary metal shadowing for TEM. In the presence of sodium and calcium ions, the self-association of κ-carrageenan helices is moderate to low. Locust bean gum did not influence the supermolecular structure of κ-carrageenan to any large extent. The microstructure of the gels at the network level was studied using plastic embedding and thin sectioning for TEM. In both sodium and calcium ionic environments, the mixed gels showed a more homogeneous and connective network structure.  相似文献   


4.
The rheology and melting of mixed polysaccharide gels containing konjac glucomannan (KGM), locust bean gum (LBG) and κ-carrageenan (KC) were studied. Synergy-type peaks in the Young's modulus at optimal mixing ratios were found for both KC/LBG and KC/KGM binary gels at a fixed total polysaccharide content (1:5.5 for LBG:KC and 1:7 for KGM:KC). The Young's modulus peak for KC/KGM was higher than for KC/LBG gels. The same stoichiometric mixing ratios were found when either LBG or KGM was added to KC at a fixed KC concentration, where the Young's modulus increased up to additions at the stoichiometric ratio, but leveled off at higher LBG or KGM additions. Addition of KGM or LBG to the 2-component gels beyond the stoichiometric (optimal) mixing ratio at a fixed total polysaccharide content led to a decrease in the Young's modulus and an increase in the rupture strain and stress in extension, and both trends were stronger for KGM than for LBG.  相似文献   

5.
Conidia of Penicillium urticae were immobilized in kappa-carrageenan beads and then shaken, in a growth-supporting medium to yield an in situ grown population of mycelia. The physical stability of these beads and the degree of mycelial growth inside the beads were significantly affected by the concentrations of kappa-carrageenan and locust bean gum (LBG) in the bead matrix and by the porous or nonporous nature of the interior. Thus 16-h-old porous and nonporous beads, prepared from 1.25% kappa-carrageenan, 0.5% LBG, and conidia, possessed a very dense mycelial mass at the surface. Only the porous beads possessed a moderately dense mycelial mass at the centre. The conidia at the centre of nonporous beads either failed to germinate or formed very small germ tubes. When washed, 36-h-old porous beads were repeatedly (i.e., 48 h) transferred into nitrogen-free medium, the density of mycelia at the centre increased to equal that at the surface after three transfers or 8 days. Mycelia at the surface exhibited signs of physical damage, while those in the centre did not. The addition of 100 micrograms/mL of cycloheximide to these replacement cultures was reflected by the distortion of interior mycelia.  相似文献   

6.
The exothermic and endothermic peaks in cooling and heating curves of differential scanning calorimetry (DSC) for gellan gum gels without and with potassium chloride and sodium chloride were analyzed. The gelling and melting temperatures shifted to higher temperatures with increasing gellan and salt concentration in the concentration range of gellan from 0.3 to 2.0% (w/w). The exothermic and endothermic enthalpy increased with increasing gellan and salt concentrations. Cooling DSC curves showed one exothermic peak for samples with salts and at low gellan concentration. Heating DSC curves showed many peaks for all samples except 0.3% (w/w) gellan gum gels. The sol-gel transition of samples was examined numerically by using a zipper model approach. The introduction of cations increases the number of junction zones or zippers and decreases the rotational freedom of parallel links. This makes the structure of junction zones more heat resistant, and increases the elastic modulus of the gel.  相似文献   

7.
Non-Newtonian behavior and dynamic viscoelasticity of a series of aqueous mixed solutions of xanthan and locust bean gum were measured using a rheogoniometer, and the rheological properties were analysed. A gelation occurred in the mixture at the concentration of 0.2% total gums at room temperature. The flow curves of the mixture solutions showed a yield value and approximated to plastic behavior at 50°C. The maximum dynamic modulus was obtained when the mixing ratio of xanthan to locust bean gum was 1:2, while comparable high moduli were also obtained in the mixing ratio of 1: 3 or 1:4. A mixture of deacetylated xanthan and locust bean gum showed the highest dynamic modulus, about two times that of the mixture of native or Na-form xanthan. The dynamic modulus of the mixtures decreased rapidly with increasing temperature. In contrast, the dynamic viscosity was scarcely changed during increasing temperature in the mixing ratio of 2: 1. The dynamic modulus was decreased by addition of urea (4.0 M), NaCl (0.1%) and MgCl2. We concluded that the intermolecular interaction between xanthan and locust bean gum might occur between the side chains of the former and backbone of the latter, as in a lock-and-key effect.  相似文献   

8.
The feasibility of textural and rheological modification of gels containing κ-carrageenan (KC) and locust bean gum (LBG) by addition of konjac glucomannan (KGM) was investigated. Special attention was paid to the effect of polysaccharide degradation during heating at acidic pH. The general effect of polysaccharide degradation was to decrease the Young's modulus, while the fracture strain in extension was scarcely affected unless the degradation was very severe.  相似文献   

9.
Galactose depleted locust bean gum was selectively oxidized in C(6) position and epimerized with mannuronan C(5)-epimerases to obtain the corresponding artificial uronanes. These new pseudo-alginates were characterized by NMR spectroscopy and circular dichroism (CD). Specifically, 1D and 2D NMR techniques allowed the degree of epimerization, the distribution of mannuronic and guluronic acid residues in the polysaccharidic chain, and the average G block length to be determined. In addition, NMR diffusion experiments showed that the epimerization reaction did not significantly degrade the polysaccharidic chains. Circular dichroism was used to investigate the kinetics of the epimerization reaction and to evidence the specific interaction between the epimerized locust bean samples with Ca(II) ions in dilute solution. All of the samples considered in this study form wall to wall gels in concentrated polymer solutions.  相似文献   

10.
The solution properties of κ-carrageenan and κ-carrageenan/locust bean gum mixtures have been studied by small deformation oscillation measurements and differential scanning calorimetry (DSC) in the presence of sodium chloride and sodium iodide. Both salts induced the κ-carrageenan to undergo a coil-helix conformational change as noted by an increase in the storage and loss moduli (G′, G′) and by an exothermic peak in the DSC cooling curves. The enthalpy ΔHc-h and temperature of the conformational transition Tc-h were higher in Nal compared to NaCl and Tc-h increased with increasing the concentration of both electrolytes. Gelation was not observed for carrageenan or carrageenan/locust bean gum mixtures in the presence of up to 200 mM Nal. Although carrageenan alone did not gel in the presence of 100 mM NaCl, a weak gel was obtained for a mixture containing 0.9%/0.1% carrageenan/locust bean gum. Furthermore, the mixture showed hysteresis in both the rheological and DSC cooling and heating curves. A strong gel was produced for carrageenan alone in the presence of 200 mM NaCl and the gel strength increased on adding a small proportion of locust bean gum (0.9%/0.1%). © 1997 John Wiley & Sons, Inc. Biopoly 41: 657–671, 1997  相似文献   

11.
In search of substances replacing antibiotics as growth promoters for farm animals, non-digestible oligosaccharides (NDO) or non-starch polysaccharides (NSP) have been proposed as possible alternatives. In this context, the influence of galactomannans on bacteriological and morphological aspects of the gastrointestinal tract in weanling pigs was investigated. Four groups of five newly weaned piglets received one of the following diets: control feed (C), C supplemented with guar gum (1%), C supplemented with locust bean gum (1%) and C supplemented with 10% of carob tree seeds meal as source of locust bean gum. The animals were euthanized after 11?–?12 days and digesta were sampled in stomach, jejunum (proximal and distal) and caecum, while mucosal scrapings and ring shaped tissue samples were taken of proximal and distal jejunum. On these samples bacteriological, biochemical and morphological determinations were carried out. Total count of bacteria in digesta and mucosal scrapings was not influenced by the different diets, with the exception of the proximal jejunum where a small decrease (0.5 log10 CFU) was noted with the guar gum and carob tree seeds diet. The number of E. coli increased by feeding both gums and carob tree seeds. With the latter diet, higher counts of streptococci were observed. In agreement with the lower concentration of lactic acid in jejunal contents, guar gum decreased the number of lactobacilli. Locust bean gum decreased the molar proportion of acetate in caecal contents while butyrate and valerate were augmented. Feeding the carob tree seeds resulted in shorter villi and a lower villus height/crypt depth ratio in the jejunum mucosa, which was an indication for a faster renewal rate of the epithelium. Both locust bean gum feeds significantly lowered the mitotic index in the crypts of the small intestine. Only with the carob tree seeds diet, viscosity of jejunal contents was increased. In conclusion, the effects of the addition of 1% of pure guar gum or locust bean gum were inconsistent and not very outspoken, whereas 10% of carob tree seeds meal in the diet resulted in influences on intestinal characteristics at the bacteriological and morphological level.  相似文献   

12.
The synergistic interaction between three red algae extracts and the galactomannan from locust bean (Ceratonia siliqua L.) and the glucomannan from the konjac tuber (Amorphophallus konjac C. Koch (syn.A. rivieri Durien var. konjac (C. Kock) Engler)) has been characterized in terms of gel properties. The extract obtained fromEucheuma alvarezii Doty (E. cottonii of commerce) was highly synergistic with bothkonjac flour and locust bean gum.Furcellaria fastigiata (Huds.) Lamour andEucheuma gelatinae (Esper) extracts were only slightly synergistic with locust bean gum, but were found to be highly synergistic with konjac flour.  相似文献   

13.
Patole  Shubham  Cheng  Lirong  Yang  Zhi 《Food biophysics》2022,17(3):314-323

This study aimed to investigate the properties of heat-induced gels (85 °C for 30 min) of quinoa protein isolate (QPI) in the presence and absence of various polysaccharides including guar gum (GG), locust bean gum (LBG), and xanthan gum (XG) at pH 7. For this purpose, samples with three gum concentrations (0.05, 0.1, and 0.2 wt%) at a fixed QPI concentration (10 wt%) and a fixed ionic strength (50 mM NaCl) were studied in terms of their gelation behaviour, small and large deformation rheological properties, water holding capabilities, and microstructural characteristics. Rheological measurements revealed that all polysaccharides incorporation could improve gel strength (complex modulus, G*) and breaking stress, accelerate gel formations, and more stiffer gels were obtained at greater polysaccharide concentrations. The XG exhibited the most gel strengthening effect followed by LBG and GG. Incorporation of 0.2 wt% XG led to a 15 folds increase in G* compared to the control. Confocal laser scanning microscopy observation revealed that the polysaccharides also altered gel microstructures, with the gels containing XG showing the most compact gel structures. The findings of this study may provide useful information for the fabrication of novel QPI based food gel products with improved texture.

  相似文献   

14.
In search of substances replacing antibiotics as growth promoters for farm animals, non-digestible oligosaccharides (NDO) or non-starch polysaccharides (NSP) have been proposed as possible alternatives. In this context, the influence of galactomannans on bacteriological and morphological aspects of the gastrointestinal tract in weanling pigs was investigated. Four groups of five newly weaned piglets received one of the following diets: control feed (C), C supplemented with guar gum (1%), C supplemented with locust bean gum (1%) and C supplemented with 10% of carob tree seeds meal as source of locust bean gum. The animals were euthanized after 11-12 days and digesta were sampled in stomach, jejunum (proximal and distal) and caecum, while mucosal scrapings and ring shaped tissue samples were taken of proximal and distal jejunum. On these samples bacteriological, biochemical and morphological determinations were carried out. Total count of bacteria in digesta and mucosal scrapings was not influenced by the different diets, with the exception of the proximal jejunum where a small decrease (0.5 log10 CFU) was noted with the guar gum and carob tree seeds diet. The number of E. coli increased by feeding both gums and carob tree seeds. With the latter diet, higher counts of streptococci were observed. In agreement with the lower concentration of lactic acid in jejunal contents, guar gum decreased the number of lactobacilli. Locust bean gum decreased the molar proportion of acetate in caecal contents while butyrate and valerate were augmented. Feeding the carob tree seeds resulted in shorter villi and a lower villus height/crypt depth ratio in the jejunum mucosa, which was an indication for a faster renewal rate of the epithelium. Both locust bean gum feeds significantly lowered the mitotic index in the crypts of the small intestine. Only with the carob tree seeds diet, viscosity of jejunal contents was increased. In conclusion, the effects of the addition of 1% of pure guar gum or locust bean gum were inconsistent and not very outspoken, whereas 10% of carob tree seeds meal in the diet resulted in influences on intestinal characteristics at the bacteriological and morphological level.  相似文献   

15.
Mixed gels of κ-carrageenan (κ-car) from Hypnea musciformis and galactomannans (Gal) from Cassia javanica (CJ) and locust bean gum (LBG) were compared using dynamic viscoelastic measurements and compression tests. Mixed gels at 5 g/l of total polymer concentration in 0.1 M KCl showed a synergistic maximum in viscoelastic measurements for κ-car/CJ and κ-car/LBG at 2:1 and 4:1 ratios, respectively. The synergistic maximum obtained from compression tests carried out for mixed gels at 10 g/l of total polymer concentration in 0.25 M KCl was the same for both κ-car/CJ and κ-car/LBG gels. An enhancement in the storage modulus (G′) and the loss modulus (G″) was observed in the mechanical spectra for the mixtures in relation to κ-car. The proportionally higher increase in G″ compared with G′, as indicated by the values of the loss tangent (tan δ), suggests that the Gal adhere non-specifically to the κ-car network.  相似文献   

16.
This study describes the effects of mixtures of xanthan gum and galactomannan, guar gum, or locust bean gum, on the lipids in plasma and liver in non-diabetic and diabetic rats. Non-diabetic rats were fed cholesterol-free diets with 3% guar gum, locust bean gum, or xanthan gum (3G, 3L, and 3X), or a mixture of xanthan gum and guar gum or locust bean gum (1:2, w/w) (2G1X, 2L1X) for 2 weeks. Rats fed diets not containing these polysaccharides were used as controls. The total cholesterol in plasma and the triacylglycerol in liver were significantly lowered in rats fed the 2G1X diet. The 3G, 3X, 3L, and 2L1X diets showed no significant effect on the total cholesterol and triacylglycerol in plasma and liver. In the streptozotocin-induced (STZ) diabetic rats, the total cholesterol in plasma was lowered in rats fed the 3G, 3X or 2G1X diet for 4 weeks, and the 2G1X diet was more effective than the 3G and 3X diets. The triacylglycerol in plasma in STZ diabetic rats was also significantly lowered by the 2G1X diet. These results showed that a mixture of xanthan gum and guar gum has an improved hypolipidemic effect on non-diabetic and STZ diabetic rats. The effects of the 2G1X diet on the diabetic symptoms in STZ diabetic rats, suppression of food and water intakes, decrease in glucose in urine, and lowering of plasma glucose, were also observed.  相似文献   

17.
This study describes the effects of mixtures of xanthan gum and galactomannan, guar gum, or locust bean gum, on the lipids in plasma and liver in non-diabetic and diabetic rats. Non-diabetic rats were fed cholesterol-free diets with 3% guar gum, locust bean gum, or xanthan gum (3G, 3L, and 3X), or a mixture of xanthan gum and guar gum or locust bean gum (1:2, w/w) (2G1X, 2L1X) for 2 weeks. Rats fed diets not containing these polysaccharides were used as controls. The total cholesterol in plasma and the triacylglycerol in liver were significantly lowered in rats fed the 2G1X diet. The 3G, 3X, 3L, and 2L1X diets showed no significant effect on the total cholesterol and triacylglycerol in plasma and liver. In the streptozotocin-induced (STZ) diabetic rats, the total cholesterol in plasma was lowered in rats fed the 3G, 3X or 2G1X diet for 4 weeks, and the 2G1X diet was more effective than the 3G and 3X diets. The triacylglycerol in plasma in STZ diabetic rats was also significantly lowered by the 2G1X diet. These results showed that a mixture of xanthan gum and guar gum has an improved hypolipidemic effect on non-diabetic and STZ diabetic rats. The effects of the 2G1X diet on the diabetic symptoms in STZ diabetic rats, suppression of food and water intakes, decrease in glucose in urine, and lowering of plasma glucose, were also observed.  相似文献   

18.
The aim of this study was to enhance the viability of probiotic strains Pediococcus pentosaceus KID7, Lactobacillus plantarum KII2, Lactobacillus fermentum KLAB6 and Lactobacillus helveticus KII13 in gastrointestinal transit, freeze-drying condition and during storage time by microencapsulation using a combination of alginate, fenugreek gum and locust bean gum. The microcapsules were prepared using various ratio of alginate to fenugreek gum to locust bean gum and tested for its dissolution in colonic fluid. The combination that efficiently dissolved in colonic fluid was selected for co-encapsulation of the probiotic strains and prebiotics to produce synbiotic microcapsules. Further, we observed that the bacteria encapsulated with alginate-fenugreek gum-locust bean gum (AFL) matrix tolerated gastrointestinal condition efficiently compared to non-encapsulated bacteria. The encapsulated bacterial cells retained higher viability than non-encapsulated cells during freeze-drying condition and subsequent storage for 3 months at 4°C. These results show the utility of AFL matrix in microencapsulation of probiotics for use in food industry.  相似文献   

19.
Gellan gum is a water-soluble exopolysaccharide, it has applications in the food, pharmaceutical and chemical industries. In this study, a gellan gum producing strain was isolated from rice root, and this strain was identified be the species of Sphingomonas azotifigens. The Plackett-Burman design was applied to investigate the main factors affecting gellan gum production by S. azotifigens GL-1 in a molasses and cheese whey based medium; the medium compositions were optimized by response surface methodology. The optimum cheese whey based medium consisted of cheese whey 68.34 g/L, Na2HPO4 14.58 g/L and KH2PO4 7.66 g/L, and the maximum gellan gum production that using this medium was 33.75 ± 1.55 g/L. 14.75 ± 0.65 g/L gellan gum was obtained with an optimized molasses medium, which consisted of molasses 50 g/L, Na2HPO4 9.71 g/L and KH2PO4 5.92 g/L. The molecular weight of gellan gum obtained from two medias were 1.06 × 106 and 0.89 × 106 Da, respectively. The cheese whey-derived gellan gum showed a higher rhamnose, lower glucuronic acid and higher glycerate content compared to the molasses-derived gellan gum. S. azotifigens GL-1 has a high gellan gum production capacity in a cheap medium suggesting it has great potential as an industrial gellan gum producer.  相似文献   

20.
The effect of sucrose and mannitol addition to low-acyl (LA) gellan gum gels at both the molecular and macroscopic levels prior to, and after freeze-drying has been investigated. It has been shown that the gel network order as well as the mechanical properties are changed with the solute content, especially in the case of sucrose. The freeze-dried gel structure, containing either mannitol or sucrose, was studied, reporting for the first time the interaction of mannitol with the gellan gum gel. The generated freeze-dried gel network was evaluated in terms of porosity, pore size and wall thickness distributions. The solute physical state was correlated the water activity trend as a function of the solute content. Since mannitol is crystalline, the water activity decreases, in contrast with the amorphous sucrose. The rehydration mechanism was investigated and associated with the solute release from the structure. Specifically, the material properties (surface and bulk) as well as the role of the dissolution medium over time were assessed. It was found that the rehydration for both the gellan/sucrose and gellan/mannitol systems was highly influenced by the additive content, as an increase in water uptake was measured up to 10 wt%. A further increase in solute led to a considerable drop in the rehydration rate and extent due to the change in the freeze-dried structure, with smaller pores and with higher wall thickness values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号