首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the axial structures on somite formation was investigated by culturing, on a nutritive agar substrate, segmental plates from chick embryos having 8 to 20 pairs of somites. In the first set of experiments, segmental plate was explanted together with adjacent notochord and approximately the lateral halves of the neural tube and node region. These explants formed 18 to 20 somites within 30 hr. In a second series of experiments, the notochord and neural tube were included as before, but further regression movements in the explants were prevented by removing the node region. These explants formed only 11.9 ± 1.1 somites. Finally, explants of segmental plate that included no neural tube, notochord, or node region were made. These explants had formed 10.7 ± 1.1 somites 14 to 17 hr later. When such explants were cultured for periods longer than 17 hr, there was a marked tendency for the more posterior somites to disperse and for all of the somites to develop a peculiar “hollow” morphology. It was concluded from these results that during the period of development when chick embryos possess 8 to 20 pairs of somites, the segmental plate mesoderm (1) represents about 12 prospective somites, (2) may segment into its full complement of somites without further contact with the axial structures, but (3) requires continued intimate contact with the axial structures for normal somite morphologic differentiation and stability.  相似文献   

2.
In Xenopus, one of the properties defining Spemann's organizer is its ability to dorsalise the mesoderm. When placed ajacent to prospective lateral/ventral mesoderm (blood, mesenchyme), the organizer causes these cells to adopt a more axial/dorsal fate (muscle). It seems likely that a similar property patterns the primitive streak of higher vertebrate embryos, but this has not yet been demonstrated clearly. Using quail/chick chimaeras and a panel of molecular markers, we show that Hensen's node (the amniote organizer) can induce posterior primitive streak (prospective lateral plate) to form somites (but not notochord) at the early neurula stage. We tested two BMP antagonists, noggin and chordin (both of which are expressed in the organizer), for their ability to generate somites and intermediate mesoderm from posterior streak, and find that noggin, but not chordin, can do this. Conversely, earlier in development, chordin can induce an ectopic primitive streak much more effectively than noggin, while neither BMP antagonist can induce neural tissue from extraembryonic epiblast. Neurulation is accompanied by regression of the node, which brings the prospective somite territory into a region expressing BMP-2, -4 and -7. One function of noggin at this stage may be to protect the prospective somite cells from the inhibitory action of BMPs. Our results suggest that the two BMP antagonists, noggin and chordin, may serve different functions during early stages of amniote development.  相似文献   

3.
The node of the mouse gastrula is the major source of the progenitor cells of the notochord, the floor plate, and the gut endoderm. The node may also play a morphogenetic role since it can induce a partial body axis following heterotopic transplantation. The impact of losing these progenitor cells and the morphogenetic activity on the development of the body axes was studied by the ablation of the node at late gastrulation. In the ablated embryo, an apparently intact anterior-posterior body axis with morphologically normal head folds, neural tube, and primitive streak developed during early organogenesis. Cell fate analysis revealed that the loss of the node elicits de novo recruitment of neural ectoderm and somitic mesoderm from the surrounding germ-layer tissues. This leads to the restoration of the neural tube and the paraxial mesoderm. However, the body axis of the embryo was foreshortened and somite formation was retarded. Histological and gene expression studies reveal that in most of the node-ablated embryos, the notochord in the trunk was either absent or interrupted, and the floor plate was absent in the ventral region of the reconstituted neural tube. The loss of the node did not affect the differentiation of the gut endoderm or the formation of the mid- and hindgut. In the node-ablated embryo, expression of the Pitx2 gene in the lateral plate mesoderm was no longer restricted to the left side but was found on both sides of the body or was completely absent from the lateral plate mesoderm. Therefore, the loss of the node results in the failure to delineate the laterality of the body axis. The node and its derivatives therefore play a critical role in the patterning of the ventral neural tube and lateral body axis but not of the anterior-posterior axis during early organogenesis.  相似文献   

4.
This study characterizes defects associated with abnormal mesoderm development in mouse embryos homozygous for the induced Ednrb(s-1Acrg) allele of the piebald deletion complex. The Ednrb(s-1Acrg) deletion results in recessive embryonic lethality and mutant embryos exhibit a truncated posterior body axis. The primitive streak and node become disfigured, consistent with evidence that cell migration is impaired in newly formed mesoderm. Additional defects related to mesoderm development include notochord degeneration, somite malformations, and abnormal vascular development. Arrested heart looping morphogenesis and a randomized direction of embryonic turning indicate that left-right development is also perturbed. The expression of nodal and leftb, Tgf-beta-related genes involved in a left-determinant signaling pathway, is variably lost in the left lateral plate mesoderm. Mutational analysis has demonstrated that Fgf8 and Brachyury (T) are required for normal mesoderm and left-right development and the asymmetric expression of nodal and leftb. Fgf8 expression in nascent mesoderm exiting the primitive streak is dramatically reduced in mutant embryos, and diminished T expression accompanies the progressive loss of paraxial, lateral, and primitive streak mesoderm. In contrast, axial mesoderm persists and T and nodal appear to be appropriately expressed in their specific domains in the node and notochord. We propose that this mutation disrupts a morphogenetic pathway, likely involving FGF signaling, important for the development of streak-derived posterior mesoderm and lateral morphogenesis.  相似文献   

5.
Fate maps of chick Hensen's node were generated using DiI and the lineage of individual cells studied by intracellular injection of lysine-rhodamine-dextran (LRD). The cell types contained within the node are organized both spatially and temporally. At the definitive primitive streak stage (Hamburger and Hamilton stage 4), Hensen's node contains presumptive notochord cells mainly in its anterior midline and presumptive somite cells in more lateral regions. Early in development it also contains presumptive endoderm cells. At all stages studied (stages 3-9), some individual cells contribute progeny to more than one of these tissues. The somitic precursors in Hensen's node only contribute to the medial halves of the somites. The lateral halves of the somites are derived from a separate region in the primitive streak, caudal to Hensen's node.  相似文献   

6.
We used Pax-2 mRNA expression and Lim 1/2 antibody staining as markers for the conversion of chick intermediate mesoderm (IM) to pronephric tissue and Lmx-1 mRNA expression as a marker for mesonephros. Pronephric markers were strongly expressed caudal to the fifth somite by stage 9. To determine whether the pronephros was induced by adjacent tissues and, if so, to identify the inducing tissues and the timing of induction, we microsurgically dissected one side of chick embryos developing in culture and then incubated them for up to 3 days. The undisturbed contralateral side served as a control. Most embryos cut parallel to the rostrocaudal axis between the trunk paraxial mesoderm and IM before stage 8 developed a pronephros on the control side only. Embryos manipulated after stage 9 developed pronephric structures on both sides, but the caudal pronephric extension was attenuated on the cut side. These results suggest that a medial signal is required for pronephric development and show that the signal is propagated in a rostral to caudal sequence. In manipulated embryos cultured for 3 days in ovo, the mesonephros as well as the pronephros failed to develop on the experimental side. In contrast, embryos cut between the notochord and the trunk paraxial mesoderm formed pronephric structures on both sides, regardless of the stage at which the operation was performed, indicating that the signal arises from the paraxial mesoderm (PM) and not from axial mesoderm. This cut also served as a control for cuts between the PM and the IM and showed that signaling itself was blocked in the former experiments, not the migration of pronephric or mesonephric precursor cells from the primitive streak. Additional control experiments ruled out the need for signals from lateral plate mesoderm, ectoderm, or endoderm. To determine whether the trunk paraxial mesoderm caudal to the fifth somite maintains its inductive capacity in the absence of contact with more rostral tissue, embryos were transected. Those transected below the prospective level of the fifth somite expressed Pax-2 in both the rostral and the caudal isolates, whereas embryos transected rostral to this level expressed Pax-2 in the caudal isolate only. Thus, a rostral signal is not required to establish the normal pattern of Pax-2 expression and pronephros formation. To determine whether paraxial mesoderm is sufficient for pronephros induction, stage 7 or earlier chick lateral plate mesoderm was cocultured with caudal stage 8 or 9 quail somites in collagen gels. Pax-2 was expressed in chick tissues in 21 of 25 embryos. Isochronic transplantation of stage 4 or 5 quail node into caudal chick primitive streak resulted in the generation of ectopic somites. These somites induced ectopic pronephroi in lateral plate mesoderm, and the IM that received signals from both native and ectopic somites formed enlarged pronephroi with increased Pax-2 expression. We conclude that signals from a localized region of the trunk paraxial mesoderm are both required and sufficient for the induction of the pronephros from the chick IM. Studies to identify the molecular nature of the induction are in progress.  相似文献   

7.
Amniote kidney tissue is derived from the intermediate mesoderm (IM), a strip of mesoderm that lies between the somites and the lateral plate. While much has been learned concerning the later events which regulate the differentiation of IM into tubules and other types of kidney tissue, much less is known concerning the earlier events which regulate formation of the IM itself. In the current study, the chick pronephros was used as a model system to identify tissues that play a role in patterning the IM and the critical time periods during which such patterning events take place. Explant studies revealed that the prospective pronephric IM is already specified to express kidney genes by stage 6, shortly after its gastrulation through the primitive streak, and earlier than previously reported. Transplant and explant experiments revealed that the lateral plate contains an activity that can repress IM formation in tissues that are already specified to express IM genes. In contrast, Hensen's node can promote formation of IM in the lateral plate. Paraxial tissues (presomitic mesoderm plus neural plate and notochord) were found to influence the morphogenesis of the nephric duct, but did not induce IM tissue to an appreciable extent. Combining lateral plate and paraxial tissue in vivo or in vitro led to induction of IM genes in the paraxial mesoderm but not in the lateral plate mesoderm. Based on these results and those of others, we propose a two-step model for the patterning of the IM. While tissue is still in the primitive streak, the prospective IM is relatively uncommitted. By stage 6, shortly after cells leave the primitive streak, a field of cells is generate which is specified to give rise to IM (Step 1). Subsequently, competing signals from the lateral plate and axial tissues modulate the number of cells that commit to an IM fate (Step 2).  相似文献   

8.
Genetic and biochemical data have identified Smad4 as a key intracellular effector of the transforming growth factor beta (TGFbeta superfamily of secreted ligands. In mouse, Smad4-null embryos do not gastrulate, a phenotype consistent with loss of other TGFbeta-related signaling components. Chimeric analysis reveals a primary requirement for Smad4 in the extra-embryonic lineages; however, within the embryo proper, characterization of the specific roles of Smad4 during gastrulation and lineage specification remains limited. We have employed a Smad4 conditional allele to specifically inactivate the Smad4 gene in the early mouse epiblast. Loss of Smad4 in this tissue results in a profound failure to pattern derivatives of the anterior primitive streak, such as prechordal plate, node, notochord and definitive endoderm. In contrast to these focal defects, many well-characterized TGFbeta- and Bmp-regulated processes involved in mesoderm formation and patterning are surprisingly unaffected. Mutant embryos form abundant extra-embryonic mesoderm, including allantois, a rudimentary heart and middle primitive streak derivatives such as somites and lateral plate mesoderm. Thus, loss of Smad4 in the epiblast results not in global developmental abnormalities but instead in restricted patterning defects. These results suggest that Smad4 potentiates a subset of TGFbeta-related signals during early embryonic development, but is dispensable for others.  相似文献   

9.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of midstreak to neural plate stages of the mouse embryo was studied by microinjecting horseradish peroxidase (HRP) into single axial endoderm cells in situ, and tracing the labeled descendants to early somite stages in vitro. Axial endoderm cells along the anterior fifth of the late streak/neural plate stage embryo contributed descendants either to the yolk sac endoderm or to the anterior intestinal portal. Cells of the exposed head process contributed to the trunk endoderm and notochord; neighboring endoderm cells contributed to the dorsal foregut. Contributions to the ventral foregut came from endoderm at, and anterior to, the distal tip of the younger, midstreak embryo (in which the head process was not yet exposed). Endoderm over the primitive streak contributed to the postsomite endoderm. We argue from these results and those in the literature that during gastrulation the axial embryonic endoderm is of mixed lineage: (1) an anterior population of cells is derived from primitive endoderm and contributes to the yolk sac endoderm; (2) a population at, and anterior to, the distal tip of the midstreak embryo, extending more anteriorly at late streak/neural plate stages, is presumed to emerge from primitive ectoderm at the beginning of gastrulation and contributes to the foregut and anterior intestinal portal; (3) the axial portion of the head process that begins to incorporate into the ventral surface at the late streak stage contributes to notochord and trunk endoderm. Cells or their descendants that were destined to die within 24 hr were evident at the midstreak stage. There was a linear trend in the incidence of cell death among labeled cells at the late streak/neural plate stages, ranging from 27% caudal to the node to 57% in the anterior fifth of the embryo. The surviving axial endoderm cells divided sufficiently fast to double the population in 24 hr.  相似文献   

10.
The murine Brachyury (T) gene is required in mesoderm formation. Mutants carrying different T alleles show a graded severity of defects correlated with gene dosage along the body axis. The phenotypes range from shortening of the tail to the malformation of sacral vertebrae in heterozygotes, and to disruption of trunk development and embryonic death in homozygotes. Defects include a severe disturbance of the primitive streak, an early cessation of mesoderm formation and absence of the allantois and notochord, the latter resulting in an abnormality of the neural tube and somites. The T gene is expressed in nascent mesoderm and in the notochord of wild-type embryos. Here the expression of T in whole-mount mutant embryos homozygous for the T allele TWis is described. The TWis gene product is altered, but the TWis/TWis phenotype is very similar to that of T/T embryos which lack T. In early TWis/TWis embryos T expression is normal, but ceases prematurely during early organogenesis coincident with a cessation of mesoderm formation. The archenteron/node region is disrupted and the extension of the notochord precursor comes to a halt, followed by a decrease and finally a complete loss of T gene expression in the primitive streak and the head process/notochord precursor. It appears that the primary defect of the mutant embryo is the disruption of the notochord precursor in the node region which is required for axis elongation. Thus the T gene product is directly or indirectly involved in the organization of axial development.  相似文献   

11.
Two distinct sources for a population of maturing axial progenitors   总被引:2,自引:0,他引:2  
In mammals, the primitive streak region and its descendant, the tail bud, are the source of nascent mesoderm and spinal cord throughout axial elongation. A localised population of long-term axial progenitors has been identified in a region of the tail bud, the chordoneural hinge, but the localisation of such progenitors at earlier stages is so far untested. By studying gene expression, we have shown that a specific topological arrangement of domains persists from the streak to the tail bud, and includes an area (the node-streak border) in which ectoderm that expresses primitive streak markers overlies the prospective notochord. This arrangement persists in the chordoneural hinge. Homotopic grafts show that, as in other vertebrates, cells in the streak and node predominantly produce mesoderm, whereas those in the node-streak border and lateral to the streak additionally produce neurectoderm. Node-streak border descendants populate not only neurectoderm, somites and notochord throughout the axis, but also the chordoneural hinge. Ectoderm lateral to the embryonic day (E)8.5 streak is later recruited to the midline, where it produces somites and chordoneural hinge cells, the position of which overlaps that of border-derived cells. Therefore, the E8.5 axial progenitors that will make the tail comprise cells from two distinct sources: the border and lateral ectoderm. Furthermore, heterotopic grafts of cells from outside the border to this region also populate the chordoneural hinge. Expression of several streak- and tail bud-specific genes declines well before elongation ends, even though this late population can be successfully transplanted into earlier embryos. Therefore, at least some aspects of progenitor status are conferred by the environment and are not an intrinsic property of the cells.  相似文献   

12.
Orthotopic grafts of [3H]thymidine-labelled cells have been used to demonstrate differences in the normal fate of tissue located adjacent to and in different regions of the primitive streak of 8th day mouse embryos developing in vitro. The posterior streak produces predominantly extraembryonic mesoderm, while the middle portion gives rise to lateral mesoderm and the anterior region generates mostly paraxial mesoderm, gut and notochord. Embryonic ectoderm adjacent to the anterior part of the streak contributes mainly to paraxial mesoderm and neurectoderm. This pattern of colonization is similar to the fate map constructed in primitive-streak-stage chick embryos. Similar grafts between early-somite-stage (9th day) embryos have established that the older primitive streak continues to generate embryonic mesoderm and endoderm, but ceases to make a substantial contribution to extraembryonic mesoderm. Orthotopic grafts and specific labelling of ectodermal cells with wheat germ agglutinin conjugated to colloidal gold (WGA-Au) have been used to analyse the recruitment of cells into the paraxial mesoderm of 8th and 9th day embryos. The continuous addition of primitive-streak-derived cells to the paraxial mesoderm is confirmed and the distribution of labelled cells along the craniocaudal sequence of somites is consistent with some cell mixing occurring within the presomitic mesoderm.  相似文献   

13.
The segmental plate mesoderm of chicken and Japanese quail embryos HH stages 9 to 16 was studied with scanning electron microscopy (SEM) imaging. The segmental plates were found to exhibit a metameric pattern consisting of tandemly stacked somitomeres. It was found that the numbers of somitomeres in segmental plates removed from the same embryo were nearly identical. Furthermore, the number of somitomeres in a segmental plate was found to be quite consistent (10.0 ± 1.5) and independent of the length of the segmental plate. These results are very similar to those obtained in previous experimental studies in which “prospective somites” were detected in avian segmental plates. Further experiments showed that for each somite that is formed by a cultured segmental plate-containing explant, the somitomere complement of the segmental plate is reduced by one. It was concluded that the segmental plate mesoderm is already organized into a metameric pattern consisting of somitomeres and that the somitomeres undergo further morphogenesis to become somites. The specification of the somite pattern in birds may occur at the level of Hensen's node and the cephalic primitive streak.  相似文献   

14.
The developmental potency of cells isolated from the primitive streak and the tail bud of 8.5- to 13.5-day-old mouse embryos was examined by analyzing the pattern of tissue colonization after transplanting these cells to the primitive streak of 8.5-day embryos. Cells derived from these progenitor tissues contributed predominantly to tissues of the paraxial and lateral mesoderm. Cells isolated from older embryos could alter their segmental fate and participated in the formation of anterior somites after transplantation to the primitive streak of 8.5-day host embryo. There was, however, a developmental lag in the recruitment of the transplanted cells to the paraxial mesoderm and this lag increased with the extent of mismatch of developmental ages between donor and host embryos. It is postulated that certain forms of cell-cell or cell-matrix interaction are involved in the specification of segmental units and that there may be age-related variations in the interactive capability of the somitic progenitor cells during development. Tail bud mesenchyme isolated from 13.5-day embryos, in which somite formation will shortly cease, was still capable of somite formation after transplantation to 8.5-day embryos. The cessation of somite formation is therefore likely to result from a change in the tissue environment in the tail bud rather than a loss of cellular somitogenetic potency.  相似文献   

15.
Developmental fates of cells emigrating from the primitive streak were traced by a fluorescent dye Dil both in chick and in quail embryos from the fully grown streak stage to 12-somite stage, focusing on the development of mesoderm and especially on the timing of ingression of each level of somitic mesoderm. The fate maps of the chick and quail streak were alike, although the chick streak was longer at all stages examined. The anterior part of the primitive streak predominantly produced somites. The thoracic and the lumbar somites were shown to begin to ingress at the 5 somite-stage and 10 somite-stage in a chick embryo, and 6 somite-stage and 9 somite-stage in a quail embryo, respectively. The posterior part of the streak served mainly as the origin of more lateral or extra embryonic mesoderm. As development proceeded, the fate of the posterior part of the streak changed from the lateral plate mesoderm to the tail bud mesoderm and then to extra embryonic, allantois mesoderm. The fate map of the primitive streak in chick and quail embryo presented here will serve as basic data for studies on mesoderm development with embryo manipulation, especially for transplantation experiments between chick and quail embryos.  相似文献   

16.
A disordered somite pattern could be produced artificially when the segmental lateral plate of chickembryo was replaced by dissociated cells of quail segmental pate.The artificially disordered somitepattern formed at either place was used in our work as a model to analyze the mechanism of thedevelopment and differentiation of somite on chick embryo.Our conclusions include the following:1.Although the formation of somites from the dissociated segmental plate cells does not requirespecial environment,the development and differentiation of the somltes require a special environmentwhich is related to the neural tube and notochord.The effect of this special environmental factor maydecrease gradually with the increase of the distance from neural tube to lateral plate.2.The somites located on paraxial area at different distances to the axis have different fates indevelopment.3.The formation of epithelial vesicles is the property of somite cells and the epithelial vesicle is thestructural basis of somite differentiation.If and factor interferes with the differentiation of thesomite,the epithelial vesicle of the somite will be degenerated within certain period of time.4.During resegmentation of the somite,the number,size and arrangement of sclerotome in situ donot depend on the somite from which they are derived.5.Somite cells do not transdifferentiate into kidney tubule directly from their original epithelialvesicles,but are reorganized from the free cells dispersed from the disrupted somites.6.The establishment of cell commitment may involve several steps.Before commitment isestablished the of cell commitment is labile.7.The differentiation of sclerotome starts with the rupture of epithelial wall of somites and thedirection of its movement depends not only on the notochord but also on their position with respectto the neural tube and notochord.8.The disordered somite pattern doesn't influence the segmentation of dorsal root ganglia in situ,but causes the formation of the ectopic dorsal root ganglia.Key Words:Somite differentiation;Artificial disordered somite pattern;Chimeral somite;Resegmentation of sclerotome;Distribution of dorsal root ganglia  相似文献   

17.
Protease nexin 1 (Pn-1) or glia derived nexin is a secreted protease inhibitor. By screening a chick embryonic cDNA library, we isolated Pn-1 cDNA and analyzed its expression pattern during development by in situ hybridization. Pn-1 was first observed at HH-stage 3 in the primitive pit. At HH-stage 7, expression was observed in the medial part of the neural folds and asymmetrically in the right lateral plate mesoderm and at the left side of Hensen's node. At HH-stage 10-11, Pn-1 was expressed in the closing neural tube, lateral plate mesoderm and paraxial head mesoderm. From HH-stage 12 onwards, expression was observed caudally in the lateral plate mesoderm and cranially in the Wolffian duct. At the level of the compartmentalized somite, expression was seen in the sclerotome. Pn-1 was also expressed in the anterior wall of the pharynx and still in the paraxial head mesoderm. At HH-stage 15, the expression in the Wolffian duct remained caudally while the expression in the sclerotome extended along the whole body axis. A stronger expression was observed in the cranial four somites. From HH-stage 17-18 onwards, expression became visible in the mesenchyme of the developing limb buds. At these stages, expression was no longer observed in the Wolffian duct. At HH-stage 36, Pn-1 was expressed in the vertebral bodies, in the neural tube, and in the metanephros.  相似文献   

18.
Chick Ghox 2.9 protein, a homeodomain-containing polypeptide, is first detected in the mid-gastrula stage embryo and its levels increase rapidly in the late gastrula. At this time, the initially narrow band of expression along the primitive streak expands laterally to form a shield-like domain that encompasses almost the entire posterior region of the embryo and extends anteriorly as far as Hensen's node. We have found that this expression domain co-localizes with a morphological feature that consists of a stratum of refractile, thickened mesoderm. Antibody-staining indicates that Ghox 2.9 protein is present in all cells of this mesodermal region. In contrast, expression within the ectoderm overlying the region of refractile mesoderm varies considerably. The highest levels of expression are found in ectoderm near the streak and surrounding Hensen's node, regions that recent fate mapping studies suggest that primarily destined to give rise to neurectoderm. At the definitive streak stage (Hamburger and Hamilton stage 4) the chick embryo is especially sensitive to the induction of axial malformations by retinoic acid. Four hours after the treatment of definitive streak embryos with a pulse of retinoic acid the expression of Ghox 2.9 protein is greatly elevated. This ectopic expression occurs in tissues anterior to Hensen's node, including floor plate, notochord, presumptive neural plate and lateral plate mesoderm, but does not occur in the anteriormost region of the embryo. The ectopic induction of Ghox 2.9 is strongest in ectoderm, and weaker in the underlying mesoderm. Endoderm throughout the embryo is unresponsive. At stage 11, Ghox 2.9 is normally expressed at high levels within rhombomere 4 of the developing hindbrain. In retinoic-acid-treated embryos which have developed to this stage, typical rhombomere boundaries are largely absent. Nevertheless, Ghox 2.9 is still expressed as a discrete band, but one that is widened and displaced to a more anterior position.  相似文献   

19.
We have isolated two mouse genes, Mox-1 and Mox-2 that, by sequence, genomic structure and expression pattern, define a novel homeobox gene family probably involved in mesodermal regionalization and somitic differentiation. Mox-1 is genetically linked to the keratin and Hox-2 genes of chromosome 11, while Mox-2 maps to chromosome 12. At primitive streak stages (approximately 7.0 days post coitum), Mox-1 is expressed in mesoderm lying posterior of the future primordial head and heart. It is not expressed in neural tissue, ectoderm, or endoderm. Mox-1 expression may therefore define an extensive 'posterior' domain of embryonic mesoderm before, or at the earliest stages of, patterning of the mesoderm and neuroectoderm by the Hox cluster genes. Between 7.5 and 9.5 days post coitum, Mox-1 is expressed in presomitic mesoderm, epithelial and differentiating somites (dermatome, myotome and sclerotome) and in lateral plate mesoderm. In the body of midgestation embryos, Mox-1 signal is restricted to loose undifferentiated mesenchyme. Mox-1 signal is also prominent over the mesenchyme of the heart cushions and truncus arteriosus, which arises from epithelial-mesenchymal transformation and over a limited number of craniofacial foci of neural crest-derived mesenchyme that are associated with muscle attachment sites. The expression profile of Mox-2 is similar to, but different from, that of Mox-1. For example, Mox-2 is apparently not expressed before somites form, is then expressed over the entire epithelial somite, but during somitic differentiation, Mox-2 signal rapidly becomes restricted to sclerotomal derivatives. The expression patterns of these genes suggest regulatory roles for Mox-1 and Mox-2 in the initial anterior-posterior regionalization of vertebrate embryonic mesoderm and, in addition, in somite specification and differentiation.  相似文献   

20.
We report that a monoclonal antibody, HNK-1, identifies specific regions and cell types during primitive streak formation in the chick blastoderm. Immunohistochemical studies show that the cells of the forming hypoblast are HNK-1 positive from the earliest time at which they can be identified. Some cells of the margin of the blastoderm are also positive. The mesoderm cells of the primitive streak stain strongly with the antibody from the time of their initial appearance. In the epiblast, some cells are positive and some negative at pre-primitive-streak stages, but as the primitive streak develops a gradient of staining intensity is seen within the upper layer, increasing towards the primitive streak. At later stages of development, the notochord and the mesenchyme of the headfold are positive, while the rest of the mesoderm (lateral plate) no longer expresses HNK-1 immunoreactivity. This antibody therefore reveals changes associated with mesodermal induction: before induction, it recognizes the 'inducing' tissue (the hypoblast) and reveals a mosaic pattern in the responding tissue (the epiblast); after primitive streak formation, the mesoderm of the primitive streak that results from the inductive interactions expresses the epitope strongly. Affinity purification of HNK-1-related proteins in various tissues was carried out, followed by SDS-PAGE to identify them. The hypoblast, mesoderm and epiblast of gastrulating chick embryos have some HNK-1-related proteins in common, while others are unique to specific tissues. Attempts have been made to identify these proteins using Western blots and antibodies known to recognize HNK-1-related molecules, but none of the antibodies used identify the bands unique to any of the tissues studied. We conclude that these proteins may be novel members of the HNK-1/L2 family, and that they may have a role in cell interactions during early development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号