首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Kato  K Kiyotani  Y Sakai  T Yoshida  T Shioda    Y Nagai 《Journal of virology》1997,71(10):7266-7272
The Sendai virus V protein is a nonstructural trans-frame protein whose cysteine-rich C-terminal half is fused to the acidic N-terminal half of the P protein via mRNA editing. We recently created a mutant by disrupting the editing motif, which is devoid of mRNA editing and hence unable to produce the V protein, and demonstrated that this V(-) virus replicated normally or even faster with augmented gene expression and cytopathogenicity in cells in vitro, but was strongly attenuated in pathogenicity for mice (A. Kato, K. Kiyotani, Y. Sakai, T. Yoshida, and Y. Nagai, EMBO J. 16:578-587, 1997). Thus, although categorized as a nonessential protein, the V protein appeared to encode a luxury function required for the viral in vivo pathogenesis. Here, we created another version of a V-deficient mutant, VdeltaC, encoding only the N-terminal half but not the V-specific C-terminal half, by introducing a stop codon in the trans-V frame, and then we compared its in vitro and in vivo phenotypes with those of the V(-) and wild-type viruses. The VdeltaC virus was found to be similar to the wild-type virus in vitro with no augmented gene expression and cytopathogenicity, but in vivo, it resembled the V(-) virus, displaying a similarly attenuated phenotype. Thus, the pathogenicity determinant in the V protein was mapped to the C-terminal half. The N-terminal half was likely sufficient to confer normal (wild-type) in vitro phenotypes.  相似文献   

2.
Sendai virus (SeV) is an enveloped virus with a negative sense genome RNA of about 15.3 kb. We previously established a system to recover an infectious virus entirely from SeV cDNA and illustrated the feasibility of using SeV as a novel expression vector. Here, we have attempted to insert a series of foreign genes into SeV of different lengths to learn how far SeV can accommodate extra genes and how the length of inserted genes affects viral replication in cells cultured in vitro and in the natural host, mice. We show that a gene up to 3.2 kb can be inserted and efficiently expressed and that the replication speed as well as the final virus titers in cell culture are proportionally reduced as the inserted gene length increases. In vivo, such a size-dependent effect was not very clear but a remarkably attenuated replication and pathogenicity were generally seen. Our data further confirmed reinforcement of foreign gene expression in vitro from the V(-) version of SeV in which the accessory V gene had been knocked out. Based on these results, we discuss the utility of SeV vector in terms of both efficiency and safety.  相似文献   

3.
The V protein of Sendai virus (SeV) is nonessential to virus replication in cell culture but indispensable to viral pathogenicity in mice. The highly conserved cysteine-rich zinc finger-like domain in its carboxyl terminus is believed to be responsible for this viral pathogenicity. In the present study, we showed that the cysteine-rich domain of the SeV V protein could actually bind zinc by using glutathione-S-transferase fusion proteins. When the seven conserved cysteine residues at positions 337, 341, 353, 355, 358, 362, and 365 were replaced individually, the zinc-binding capacities of the mutant proteins were greatly impaired, ranging from 22 to 68% of that of the wild type. We then recovered two mutant SeVs from cDNA, which have V-C(341)S and V-C(365)R mutations and represent maximal and minimal zinc-binding capacities among the corresponding mutant fusion proteins, respectively. The mutant viruses showed viral protein synthesis and growth patterns similar to those of wild-type SeV in cultured cells. However, the mutant viruses were strongly attenuated in mice in a way similar to that of SeV V(DeltaC), which has a truncated V protein lacking the cysteine-rich domain, by exhibiting earlier viral clearance from the mouse lung and less virulence to mice. We therefore conclude that the zinc-binding capacity of the V protein is involved in viral pathogenesis.  相似文献   

4.
Editing of P-gene mRNA of Newcastle disease virus (NDV) enables the formation of two additional proteins (V and W) by inserting one or two nontemplated G residues at a conserved editing site (5'-AAAAAGGG). The V protein of NDV plays an important role in virus replication and is also a virulence factor presumably due to its ability to counteract the antiviral effects of interferon. A recombinant virus possessing a nucleotide substitution within the A-stretch (5'-AAgAAGGG) produced 20-fold-less V protein and, in consequence, was impaired in replication capacity and completely attenuated in pathogenicity for chicken embryos. However, in a total of seven serial passages, restoration of replication and pathogenic capacity in 9- to 11-day-old chicken embryos was noticed. Determining the sequence around the editing site of the virus at passage 7 revealed a C-to-U mutation at the second nucleotide immediately upstream of the 5'-A(5) stretch (5'-GuUAAgAAGGG). The V mRNA increased from an undetectable level at passage 5 to ca. 1 and 5% at passages 6 and 7, respectively. In addition, similar defects in another mutant possessing a different substitution mutation (5'-AAAcAGGG) were restored in an identical manner within a total of seven serial passages. Introduction of the above C-to-U mutation into the parent virus (5'-GuUAAAAAGGG) altered the frequency of P, V, and W mRNAs from 68, 28, and 4% to 15, 44, and 41%, respectively, demonstrating that the U at this position is a key determinant in modulating P-gene mRNA editing. The results indicate that this second-site mutation is required to compensate for the drop in edited mRNAs and consequently to restore the replication capacity, as well as the pathogenic potential, of editing-defective NDV recombinants.  相似文献   

5.
6.
7.
Kato A 《Uirusu》2004,54(2):179-188
The nucleotide sequence of Sendai virus (SeV) genome was determined in the 1980's. During the analysis of its cDNA, two mRNAs were found to be transcribed from the P gene; one encoding P protein, the other encoding V protein. In addition, C protein was found to be translated from both/ mRNAs. Though the function of V and C proteins was being unknown for a while, the reverse-genetic technique of paramyxoviruses developed at the latter half of the 1990's gave the light on studying them. The V or C protein-knockout-SeV can be made successfully, indicating that the V and C proteins are nonessential for virus growth, However, V knockout-SeV was cleared from the mouse lungs at the one day post inoculation, and C knockout-SeV was cleared immediately after the inoculation. Both V and C proteins were thus appeared to be important for counteracting host innate immunity generated in the early phase of viral infection.  相似文献   

8.
The P/C mRNA of Sendai virus (SeV) encodes a nested set of accessory proteins, C', C, Y1, and Y2, referred to collectively as C proteins, using the +1 frame relative to the open reading frame of phospho (P) protein and initiation codons at different positions. The C proteins appear to be basically nonstructural proteins as they are found abundantly in infected cells but greatly underrepresented in the virions. We previously created a 4C(-) SeV, which expresses none of the four C proteins, and concluded that the C proteins are categorically nonessential gene products but greatly contribute to viral full replication and infectivity (A. Kurotani et al., Genes Cells 3:111-124, 1998). Here, we further characterized the 4C(-) virus multiplication in cultured cells. The viral protein and mRNA synthesis was enhanced with the mutant virus relative to the parental wild-type (WT) SeV. However, the viral yields were greatly reduced. In addition, the 4C(-) virions appeared to be highly anomalous in size, shape, and sedimentation profile in a sucrose gradient and exhibited the ratios of infectivity to hemagglutination units significantly lower than those of the WT. In the WT infected cells, C proteins appeared to colocalize almost perfectly with the matrix (M) proteins, pretty well with an external envelope glycoprotein (hemagglutinin-neuraminidase [HN]), and very poorly with the internal P protein. In the absence of C proteins, there was a significant delay of the incorporation of M protein and both of the envelope proteins, HN and fusion (F) proteins, into progeny virions. These results strongly suggest that the accessory and basically nonstructural C proteins are critically required in the SeV assembly process. This role of C proteins was further found to be independent of their recently discovered function to counteract the antiviral action of interferon-alpha/beta. SeV C proteins thus appear to be quite versatile.  相似文献   

9.
Newcastle disease virus (NDV) edits its P-gene mRNA by inserting a nontemplated G residue(s) at a conserved editing site (3'-UUUUUCCC-template strand). In the wild-type virus, three amino-coterminal P-gene-derived proteins, P, V, and W, are produced at frequencies of approximately 68, 29, and 2%, respectively. By applying the reverse genetics technique, editing-defective mutants were generated in cell culture. Compared to the wild-type virus, mutants lacking either six nucleotides of the conserved editing site or the unique C-terminal part of the V protein produced as much as 5, 000-fold fewer infectious progeny in vitro or 200,000-fold fewer in 6-day-old embryonated chicken eggs. In addition, both mutants were unable to propagate in 9- to 11-day-old embryonated specific-pathogen-free (SPF) chicken eggs. In contrast, a mutant (NDV-P1) with one nucleotide substitution (UUCUUCCC) grew in eggs, albeit with a 100-fold-lower infectious titer than the parent virus. The modification in the first two mutants described above led to complete abolition of V expression, whereas in NDV-P1 the editing frequency was reduced to less than 2%, and as a result, V was expressed at a 20-fold-lower level. NDV-P1 showed markedly attenuated pathogenicity for SPF chicken embryos, unlike currently available ND vaccine strains. These findings indicate that the V protein of NDV has a dual function, playing a direct role in virus replication as well as serving as a virulence factor. Administration of NDV-P1 to 18-day-old embryonated chicken eggs hardly affected hatchability. Hatched chickens developed high levels of NDV-specific antibodies and were fully protected against lethal challenge, demonstrating the potential use of editing-defective recombinant NDV as a safe embryo vaccine.  相似文献   

10.
11.
Many paramyxoviruses express small basic C proteins, from an alternate, overlapping open reading frame of the P gene mRNA, which were previously found to inhibit mRNA synthesis. During recent experiments in which infectious Sendai virus (SeV) was recovered from cDNA via the initial expression of the viral N, P, and L genes from plasmids, the abrogation of C protein expression from the plasmid P gene was found to be necessary for virus recovery. We have investigated the effect of C coexpression on the amplification of an internally deleted defective interfering (DI) genome directly in the transfected cell, for which, in contrast to virus recovery experiments, genome amplification is independent of mRNA synthesis carried out by the SeV polymerase. We find that C protein coexpression also strongly inhibits the amplification of this DI genome but has little or no effect on that of a copy-back DI genome (DI-H4). We have also characterized the C protein from a mutant SeV and found that (i) it had lost most of its inhibitory activity on internally deleted DI genome amplification and (ii) its coexpression no longer prevented the recovery of SeV from DNA. However, consistent with the insensitivity of copy-back DI genomes to C protein inhibition, C coexpression did not prevent the recovery of copy-back nondefective viruses from DNA. The inhibitory effects of C coexpression thus appear to be promoter specific.  相似文献   

12.
We have studied the relationship between the Sendai virus (SeV) C proteins (a nested set of four proteins initiated at different start codons) and the interferon (IFN)-mediated antiviral response in IFN-competent cells in culture. SeV strains containing wild-type or various mutant C proteins were examined for their ability (i) to induce an antiviral state (i.e., to prevent the growth of vesicular stomatitis virus [VSV] following a period of SeV infection), (ii) to induce the elevation of Stat1 protein levels, and (iii) to prevent IFN added concomitant with the SeV infection from inducing an antiviral state. We find that expression of the wild-type C gene and, specifically, the AUG114-initiated C protein prevents the establishment of an antiviral state: i.e., cells infected with wild-type SeV exhibited little or no increase in Stat1 levels and were permissive for VSV replication, even in the presence of exogenous IFN. In contrast, in cells infected with SeV lacking the AUG114-initiated C protein or containing a single amino acid substitution in the C protein, the level of Stat1 increased and VSV replication was inhibited. The prevention of the cellular IFN-mediated antiviral response appears to be a key determinant of SeV pathogenicity.  相似文献   

13.
Nonstructural proteins encoded by measles virus (MV) include the V protein which is translated from an edited P mRNA. V protein is not associated with intracellular or released viral particles and has recently been found to be dispensable for MV propagation in cell culture (H. Schneider, K. Kaelin, and M. A. Billeter, Virology 227:314–322, 1997). Using recombinant MVs (strain Edmonston [ED]) genetically engineered to overexpress V protein (ED-V+) or to be deficient for V protein (ED-V−), we found that in the absence of V both MV-specific proteins and RNAs accumulated to levels higher than those in the parental MV molecular clone (ED-tag), whereas MV-specific gene expression was strongly attenuated in human U-87 glioblastomas cells after infection with ED-V+. The titers of virus released from these cells 48 h after infection with either V mutant virus were lower than those from cells infected with ED-tag. Similarly, significantly reduced titers of infectious virus were reisolated from lung tissue of cotton rats (Sigmodon hispidus) after intranasal infection with both editing mutants compared to titers isolated from ED-tag-infected animals. In cell culture, expression of V protein led to a redistribution of MV N protein in doubly transfected Cos-7 cells, indicating that these proteins form heterologous complexes. This interaction was further confirmed by using a two-hybrid approach with both proteins expressed as Gal4 or VP16 fusion products. Moreover, V protein efficiently competed complexes formed between MV N and P proteins. These findings indicate that V protein acts to balance accumulation of viral gene products in cell culture, and this may be dependent on its interaction with MV N protein. Furthermore, expression of V protein may contribute to viral pathogenicity in vivo.  相似文献   

14.
The Sendai virus (SeV) C protein blocks signal transduction of interferon (IFN), thereby counteracting the antiviral actions of IFN. Using HeLa cell lines expressing truncated or mutated SeV C proteins, we found that the C-terminal half has anti-IFN capacity, and that K(151)A, E(153)A, and R(154)A substitutions in the C protein eliminated this capacity. Here, we further created the mutant virus SeV Cm*, in which K(151)A, E(153)K, and R(157)L substitutions in the C protein were introduced without changing the amino acid sequence of overlapped P, V, and W proteins. SeV Cm* was found to lack anti-IFN capacity, as expected. While the growth rate and final yield of SeV Cm* were inferior to those of the wild-type SeV in IFN-responsive, STAT1-positive 2fTGH cells, SeV Cm* grew equivalently to the wild-type SeV in IFN-nonresponsive, STAT1-deficient U3A cells. SeV Cm* was thus shown to maintain multiplication capacity, except that it lacked anti-IFN capacity. Intranasally inoculated SeV Cm* could propagate in the lungs of STAT1(-/-) mice but was cleared from those of STAT1(+/+) mice without propagation. It was found that the anti-IFN capacity of the SeV C protein was indispensable for pathogenicity in mice. Conversely, the results show that the innate immunity contributed to elimination of SeV in early stages of infection in the absence of anti-IFN capacity.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) is frequently attenuated after long-term culture in vitro. The attenuation process probably involves mutations of functions required for replication and pathogenicity in vivo. Analysis of attenuated HIV-1 for replication and pathogenicity in vivo will help to define these functions. In this study, we examined the pathogenicity of an attenuated HIV-1 isolate in a laboratory worker accidentally exposed to a laboratory-adapted HIV-1 isolate. Using heterochimeric SCID-hu Thy/Liv mice as an in vivo model, we previously defined HIV-1 env determinants (HXB/LW) that reverted to replicate in vivo (L. Su, H. Kaneshima, M. L. Bonyhadi, R. Lee, J. Auten, A. Wolf, B. Du, L. Rabin, B. H. Hahn, E. Terwilliger, and J. M. McCune, Virology 227:46-52, 1997). Here we further demonstrate that HIV-1 replication in vivo can be separated from its pathogenic activity, in that the HXB/LW virus replicated to high levels in SCID-hu Thy/Liv mice, with no significant thymocyte depletion. Restoration of the nef gene in the recombinant HXB/LW genome restored its pathogenic activity, with no significant effect on HIV-1 replication in the thymus. Our results suggest that in vitro-attenuated HIV-1 lacks determinants for pathogenicity as well as for replication in vivo. Our data indicate that (i) the replication defect can be recovered in vivo by mutations in the env gene, without an associated pathogenic phenotype, and (ii) nef can function in the HXB/LW clone as a pathogenic factor that does not enhance HIV-1 replication in the thymus. Furthermore, the HXB/LW virus may be used to study mechanisms of HIV-1 nef-mediated pathogenesis in vivo.  相似文献   

16.
Nakatsu Y  Takeda M  Ohno S  Koga R  Yanagi Y 《Journal of virology》2006,80(23):11861-11867
In addition to the phosphoprotein, the P gene of measles virus (MV) also encodes the V and C proteins by an RNA editing process and by alternative initiation of translation in a different reading frame, respectively. Although the MV C protein is required for efficient MV replication in vivo and in some cultured cells, its exact functions in virus infection are currently unclear. Here, we report that a recombinant MV lacking the C protein (MVDeltaC) grew poorly in a human cell line possessing the intact interferon (IFN) pathway and that this growth defect was associated with reduced viral translation and genome replication. The translational inhibition was correlated with phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Moreover, increased IFN induction was observed in MVDeltaC-infected cells. The NS1 protein of influenza virus, which binds to double-stranded RNA (dsRNA) and consequently inhibits IFN induction and dsRNA-dependent protein kinase activation, complemented the growth defect of MVDeltaC. These results indicate that the MV C protein inhibits IFN induction and modulates host antiviral responses, thereby ensuring MV growth in host cells.  相似文献   

17.
A new role of the Paramyxovirus accessory proteins has been uncovered. The P gene of the subfamily Paramyxovirinae encodes accessory proteins including the V and/or C protein by means of pseudotemplated nucleotide addition (RNA editing) or by overlapping open reading frame. The Respirovirus (Sendai virus and human parainfluenza virus (hPIV)3) and Rubulavirus (simian virus (SV)5, SV41, mumps virus and hPIV2) circumvent the interferon (IFN) response by inhibiting IFN signaling. The responsible genes were mapped to the C gene for SeV and the V gene for rubulaviruses. On the other hand, wild type measles viruses isolated from clinical specimens suppress production of IFN, although responsible viral factors remain to be identified. Both human and bovine respiratory syncytial viruses (RSVs) counteract the antiviral effect of IFN with inhibiting neither IFN signaling nor IFN production. Bovine RSV NS1 and NS2 proteins cooperatively antagonize the antiviral effect of IFN. Studies on the molecular mechanism by which viruses circumvent the host IFN response will not only illustrate co-evolution of virus strategies of immune evasion but also provide basic information useful for engineering novel antiviral drugs as well as recombinant live vaccine.  相似文献   

18.
19.
20.
Newcastle disease virus (NDV) edits its P gene by inserting one or two G residues at the conserved editing site (UUUUUCCC, genome sense) and transcribes the P mRNA (unedited), the V mRNA (with a +1 frameshift), and the W mRNA (with a +2 frameshift). All three proteins are amino coterminal but vary at their carboxyl terminus in length and amino acid composition. Little is known about the role of the V and W proteins in NDV replication and pathogenesis. We have constructed and recovered two recombinant viruses in which the expression of the V or both the V and W proteins has been abolished. Compared to the parental virus, the mutant viruses showed impaired growth in cell cultures, except in Vero cells. However, transient expression of the carboxyl-terminal portion of the V protein enhanced the growth of the mutant viruses. In embryonated chicken eggs, the parental virus grew to high titers in embryos of different gestational ages, whereas the mutant viruses showed an age-dependent phenomenon, growing to lower titer in more-developed embryos. An interferon (IFN) sensitivity assay showed that the parental virus was more resistant to the antiviral effect of IFN than the mutant viruses. Moreover, infection with the parental virus resulted in STAT1 protein degradation, but not with the mutant viruses. These findings indicate that the V protein of NDV possesses the ability to inhibit alpha IFN and that the IFN inhibitory function lies in the carboxyl-terminal domain. Pathogenicity studies showed that the V protein of NDV significantly contributes to the virus virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号