首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have previously reported that mice immunized with the mycobacterial 27-kDa lipoprotein were more susceptible to Mycobacterium tuberculosis (Mtb) challenge. We also showed that 27-kDa lipoprotein abrogated the protection afforded by the BCG vaccine when administrated together, suggesting that the 27-kDa lipoprotein may modulate the course of experimental mycobacterial infection. In this study, we address the role of the 27-kDa lipoprotein in modulating the immune response to mycobacteria. Our results show that co-administration of BALB/c mice with Mtb and the 27-kDa lipoprotein (Mtb+27kDa), but not its non-acylated form, increases the susceptibility of mice to Mtb infection. Significantly lower DTH reaction and splenocyte proliferation to PPD stimulation were also observed in Mtb+27kDa-infected mice compared to Mtb-infected mice. Furthermore, during infection, splenocytes and purified T cells lost their ability to proliferate in response to concanavalin A stimulation more rapidly in the Mtb+27kDa-infected mice, which was accompanied by high IFN-gamma and NO production, but low TNF-alpha secretion levels. Addition of L-NMMA, anti-IFN-gamma and anti-TNF-alpha antibodies restored in vitro proliferative responses of T cells from Mtb+27kDa-infected mice. Short-term L-NMMA treatment of Mtb+27kDa-infected mice prevented the 27-kDa-mediated immunosuppression and increase in susceptibility to Mtb. Altogether, these data suggest that the 27-kDa lipoprotein plays a role in Mtb infection by inducing increased suppression of the immune response due to elevated NO production.  相似文献   

3.
Macrophages infected with Mycobacterium tuberculosis undergo increased rates of apoptosis. Important objectives are to define the microbial factors that cause apoptosis, the mechanisms involved and the impact on infection. The 19-kDa M. tuberculosis glycolipoprotein (p19) is both cell wall-associated and secreted and is a candidate virulence factor. We investigated the potential of recombinant, His-tagged p19 lacking the secretion/acylation signal to induce macrophage apoptosis. The TUNEL assay and annexin V binding to membrane phosphatidylserine were used to measure apoptosis. The results show that p19 does act to induce apoptosis in differentiated THP-1 cells and monocyte-derived macrophages and that this effect is both dose- and time-dependent. Furthermore, this effect of p19 is Toll-like receptor (TLR)-2-mediated because preincubation of either THP-1 cells or TLR-2-expressing CHO cells with anti-TLR-2 mAb inhibited apoptosis induced by p19. Apoptosis of macrophages in response to p19 was found to be caspase-8 dependent and caspase-9 independent consistent with a transmembrane pathway signaling cell death through TLR-2. The viability of M. tuberculosis in cells undergoing apoptosis induced by p19 was significantly reduced suggesting the possibility that this may favor containment of infection. Although native p19 is a mycobacterial glycolipoprotein, based upon the use of recombinant p19 where the acylation signal had been removed, we conclude that it is the polypeptide component of p19 that is responsible for signaling through TLR-2 and that the lipid moiety is not required.  相似文献   

4.
Mycobacterium tuberculosis (MTB) induces vigorous immune responses, yet persists inside macrophages, evading host immunity. MTB bacilli or lysate was found to inhibit macrophage expression of class II MHC (MHC-II) molecules and MHC-II Ag processing. This report characterizes and identifies a specific component of MTB that mediates these inhibitory effects. The inhibitor was extracted from MTB lysate with Triton X-114, isolated by gel electroelution, and identified with Abs to be MTB 19-kDa lipoprotein. Electroelution- or immunoaffinity-purified MTB 19-kDa lipoprotein inhibited MHC-II expression and processing of both soluble Ags and Ag 85B from intact MTB bacilli. Inhibition of MHC-II Ag processing by either MTB bacilli or purified MTB 19-kDa lipoprotein was dependent on Toll-like receptor (TLR) 2 and independent of TLR 4. Synthetic analogs of lipopeptides from Treponema pallidum also inhibited Ag processing. Despite the ability of MTB 19-kDa lipoprotein to activate microbicidal and innate immune functions early in infection, TLR 2-dependent inhibition of MHC-II expression and Ag processing by MTB 19-kDa lipoprotein during later phases of macrophage infection may prevent presentation of MTB Ags and decrease recognition by T cells. This mechanism may allow intracellular MTB to evade immune surveillance and maintain chronic infection.  相似文献   

5.
Mycobacterium tuberculosis (MTB) persists inside macrophages despite vigorous immune responses. MTB and MTB 19-kDa lipoprotein inhibit class II MHC (MHC-II) expression and Ag processing by a Toll-like receptor 2-dependent mechanism that is shown in this study to involve a defect in IFN-gamma induction of class II transactivator (CIITA). Exposure of macrophages to MTB or MTB 19-kDa lipoprotein inhibited IFN-gamma-induced MHC-II expression, but not IL-4-induced MHC-II expression, by preventing induction of mRNA for CIITA (total, type I, and type IV), IFN regulatory factor-1, and MHC-II. MTB 19-kDa lipoprotein induced mRNA for suppressor of cytokine signaling (SOCS)1 but did not inhibit IFN-gamma-induced Stat1 phosphorylation. Furthermore, the lipoprotein inhibited MHC-II Ag processing in SOCS1(-/-) macrophages. MTB 19-kDa lipoprotein did not inhibit translocation of phosphorylated Stat1 to the nucleus or Stat1 binding to and transactivation of IFN-gamma-sensitive promoter constructs. Thus, MTB 19-kDa lipoprotein inhibited IFN-gamma signaling independent of SOCS1 and without interfering with the activation of Stat1. Inhibition of IFN-gamma-induced CIITA by MTB 19-kDa lipoprotein may allow MTB to evade detection by CD4(+) T cells.  相似文献   

6.
Fifteen overlapping synthetic peptides, spanning the entire amino acid sequence of the Mycobacterium tuberculosis 19-kDa protein, were used to identify epitopes recognized by murine T cells. Five of the 15 peptides tested were able to elicit in vitro lymph node T cell proliferative responses in C57BL/10 mice primed by footpad inoculation with homologous peptide. Analysis in congenic strains of mice revealed H-2 restriction in the response to four peptides. However, one peptide, 19.7 (residues 61 to 80), induced T cell responses in all four haplotypes tested. This peptide was also unique in being able to stimulate lymph node cells from C57BL/10 mice immunized with recombinant 19-kDa protein, killed M. tuberculosis, or live bacillus Calmette Guerin infection. T cell lines specific for peptide 19.7 were of the CD4 phenotype. Significantly, sequence analysis revealed that residues 61 to 80 of the 19-kDa protein exhibited considerable homology with a single 20-amino acid sequence (residues 120 to 140), but not with any other region of the 28-kDa protein expressed in Mycobacterium leprae. This finding is the first evidence of epitope-restricted homology between otherwise structurally unrelated microbial Ag.  相似文献   

7.
8.
Fibrinogen promotes neutrophil activation and delays apoptosis   总被引:7,自引:0,他引:7  
The acute phase of the inflammatory response involves an increase in the concentrations of different plasma proteins that include fibrinogen (Fbg) and multiple proinflammatory mediators. In parallel, neutrophil activation is thought to play a crucial role in several inflammatory conditions, and it has been recently demonstrated that Fbg specifically binds to the alpha-subunit of CD11b/CD18 on neutrophil surface. Although several reports have shown that CD11b engagement modulates neutrophil responses, the effect of human Fbg (hFbg), one of CD11b physiologic ligands, has not been exhaustively investigated. We have now shown that incubation of purified neutrophils with hFbg induces a transient and rapid elevation of free intracellular Ca2+. This early intracellular signal is accompanied by changes in the expression of neutrophil activation markers, including enhancement of CD11b and CD66b, and down-regulation of FcgammaRIII. In addition, we have evaluated the effect of hFbg on two functional events related to expression and resolution of inflammation: cytotoxic capacity and rate of neutrophil apoptosis. We have found that activation of neutrophils by hFbg resulted in both enhancement of phagocytosis and Ab-dependent cellular cytotoxicity, and delay of apoptosis. We conclude that during inflammatory processes, soluble Fbg could influence neutrophil responses, increasing and prolonging their functional capacity.  相似文献   

9.
Mycobacterium tuberculosis (Mtb) parasitizes host macrophages and subverts host innate and adaptive immunity. Several cytokines elicited by Mtb are mediators of mycobacterial clearance or are involved in tuberculosis pathology. Surprisingly, interleukin-1beta (IL-1beta), a major proinflammatory cytokine, has not been implicated in host-Mtb interactions. IL-1beta is activated by processing upon assembly of the inflammasome, a specialized inflammatory caspase-activating protein complex. Here, we show that Mtb prevents inflammasome activation and IL-1beta processing. An Mtb gene, zmp1, which encodes a putative Zn(2+) metalloprotease, is required for this process. Infection of macrophages with zmp1-deleted Mtb triggered activation of the inflammasome, resulting in increased IL-1beta secretion, enhanced maturation of Mtb containing phagosomes, improved mycobacterial clearance by macrophages, and lower bacterial burden in the lungs of aerosol-infected mice. Thus, we uncovered a previously masked role for IL-1beta in the control of Mtb and a mycobacterial system that prevents inflammasome and, therefore, IL-1beta activation.  相似文献   

10.
Immunoreactivity of a 10-kDa antigen of Mycobacterium tuberculosis.   总被引:11,自引:0,他引:11  
Identification of Ag of Mycobacterium tuberculosis recognized by T cells is essential to understanding the pathogenesis of tuberculosis and mechanism(s) of resistance to infection. Previous studies evaluating the immunoreactivity of nitrocellulose transfers of M. tuberculosis Ag separated by SDS-PAGE indicated that a high proportion of M. tuberculosis-reactive T cell lines proliferate in response to a 10-kDa Ag. We therefore purified this Ag from M. tuberculosis culture filtrates and evaluated its immunoreactivity in patients with tuberculous infection. Proliferative responses of PBMC to the 10-kDa Ag were similar to those induced by whole M. tuberculosis and greater than those elicited by other proteins isolated from culture filtrate. Furthermore, in patients with tuberculous pleuritis, proliferative responses to the 10-kDa Ag were higher in pleural fluid mononuclear cells than in PBMC, indicating that T cell reactivity to this Ag is enhanced at the site of disease. The first 15 amino acids of the 10-kDa Ag were identical to those defined previously for Bacillus Calmette-Guérin-a (BCG-a), and a T cell clone recognized the 10-kDa Ag and a peptide of BCG-a, indicating that the 10-kDa Ag corresponds to BCG-a. This Ag elicited IFN-gamma production by pleural fluid mononuclear cells and by PBMC from healthy tuberculin reactors, suggesting that the 10-kDa Ag can enhance macrophage activation and resistance to mycobacterial infection. Our findings indicate that the 10-kDa Ag of M. tuberculosis is highly immunoreactive and should be evaluated for its capacity to elicit protective immunity.  相似文献   

11.
TLR2 signaling by Mycobacterium tuberculosis 19-kDa lipoprotein (LpqH) inhibits IFN-gamma-induced expression of CIITA by macrophages. Microarray analysis, quantitative RT-PCR, and Western blots showed that LpqH induced C/EBPbeta and C/EBPdelta in kinetic correlation with inhibition of CIITA expression. Of the C/EBPbeta isoforms, liver inhibitory protein (LIP) was notably induced and liver-activating protein was increased by LpqH. Putative C/EBP binding sites were identified in CIITA promoters I and IV (pI and pIV). LpqH induced binding of C/EBPbeta (LIP and liver-activating protein) to biotinylated oligodeoxynucleotide containing the pI or pIV binding sites, and chromatin immunoprecipitation showed that LpqH induced binding of C/EBPbeta and C/EBPdelta to endogenous CIITA pI and pIV. Constitutive expression of C/EBPbeta LIP inhibited IFN-gamma-induced CIITA expression in transfected cells. In summary, LpqH induced expression of C/EBPbeta and C/EBPdelta, and their binding to CIITA pI and pIV, in correlation with inhibition of IFN-gamma-induced expression of CIITA in macrophages, suggesting a role for C/EBP as a novel regulator of CIITA expression.  相似文献   

12.
Mycobacterium tuberculosis promotes its replication by inhibiting the apoptosis of infected macrophages. A proapoptotic M.?tuberculosis mutant lacking nuoG, a subunit of the type I NADH dehydrogenase complex, exhibits attenuated growth in?vivo, indicating that this virulence mechanism is essential. We show that M.?tuberculosis also suppresses neutrophil apoptosis. Compared to wild-type, the nuoG mutant spread to a larger number of lung phagocytic cells. Consistent with the shorter lifespan of infected neutrophils, infection with the nuoG mutant resulted in fewer bacteria per infected neutrophil, accelerated bacterial acquisition by dendritic cells, earlier trafficking of these dendritic cells to lymph nodes, and faster CD4 T?cell priming. Neutrophil depletion abrogated accelerated CD4 T?cell priming by the nuoG mutant, suggesting that inhibiting neutrophil apoptosis delays adaptive immunity in tuberculosis. Thus, pathogen modulation of apoptosis is beneficial at multiple levels, and enhancing phagocyte apoptosis promotes CD4 as well as CD8 T?cell responses.  相似文献   

13.
Pathogen-associated molecular patterns (PAMPs) signal through Toll-like receptors (TLRs) to activate immune responses, but prolonged exposure to PAMPs from Mycobacterium tuberculosis (MTB) and other pathogens inhibits class II MHC (MHC-II) expression and Ag processing, which may allow MTB to evade CD4(+) T cell immunity. Alternate class I MHC (MHC-I) processing allows macrophages to present Ags from MTB and other bacteria to CD8(+) T cells, but the effect of PAMPs on this processing pathway is unknown. In our studies, MTB and TLR-signaling PAMPs, MTB 19-kDa lipoprotein, CpG DNA, and LPS, inhibited alternate MHC-I processing of latex-conjugated Ag by IFN-gamma-activated macrophages. Inhibition was dependent on TLR-2 for MTB 19-kDa lipoprotein (but not whole MTB or the other PAMPs); inhibition was dependent on myeloid differentiation factor 88 for MTB and all of the individual PAMPs. Inhibition of MHC-II and alternate MHC-I processing was delayed, appearing after 16 h of PAMP exposure, as would occur in chronically infected macrophages. Despite inhibition of alternate MHC-I Ag processing, there was no inhibition of MHC-I expression, MHC-I-restricted presentation of exogenous peptide or conventional MHC-I processing of cytosolic Ag. MTB 19-kDa lipoprotein and other PAMPs inhibited phagosome maturation and phagosome Ag degradation in a myeloid differentiation factor 88-dependent manner; this may limit availability of peptides to bind MHC-I. By inhibiting both MHC-II and alternate MHC-I Ag processing, pathogens that establish prolonged infection of macrophages (>16 h), e.g., MTB, may immunologically silence macrophages and evade surveillance by both CD4(+) and CD8(+) T cells, promoting chronic infection.  相似文献   

14.
Lin  Jiahui  Chang  Qun  Dai  Xueting  Liu  Dan  Jiang  Yuyin  Dai  Yalei 《Molecular and cellular biochemistry》2019,453(1-2):179-186
Molecular and Cellular Biochemistry - Mycoplasma pneumoniae pneumonia (MPP) is the most common respiratory infection in young children and its incidence has increased worldwide. In this study, high...  相似文献   

15.
SodC is one of two superoxide dismutases produced by Mycobacteriumtuberculosis. This protein was previously shown to contributeto virulence and to act as a B-cell antigen. SodC is also aputative lipoprotein, and like other Sec-translocated mycobacterialproteins it was suggested to be modified with glycosyl units.To definitively define the glycosylation of SodC, we appliedan approach that combined site-directed mutagenesis, lectinbinding, and mass spectrometry. This resulted in identificationof six O-glycosylated residues within a 13-amino-acid regionnear the N-terminus. Each residue was modified with one to threehexose units, and the most dominant SodC glycoform was modifiedwith nine hexose units. In addition to O-glycosylation of threonineresidues, this study provides the first evidence of serine O-glycosylationin mycobacteria. When combined with bioinformatic analyses,the clustering of O-glycosylation appeared to occur in a regionof SodC with a disordered structure and not in regions importantto the enzymatic activity of SodC. The use of recombinant aminoacid substitutions to alter glycosylation sites provided furtherevidence that glycosylation influences proteolytic processingand ultimately positioning of cell wall proteins.  相似文献   

16.
The biochemical mechanism of action of human neutrophil peptide-1 (HNP-1) against Mycobacterium tuberculosis H37Ra was studied. Mycobacteria grown in the presence of a subinhibitory concentration (IC50) of HNP-1 showed a significant decrease in the biosynthesis of vital macromolecules, as shown by the incorporation of various radiolabeled precursors. Mycobacterial cells grown in the presence of HNP-1 exhibited surface changes, as was evident from the increased number of binding sites for l-anilinonaphthalene 8-sulfonate. Permeability studies carried out with spheroplasts showed a significantly high permeability to a fluorescent probe, N-phenyl naphthylamine, in the presence of HNP-1. Significant changes in the cell wall and cell membrane were observed when HNP-1-grown cells were analysed by transmission electron microscopy. Our results suggest the mycobacterial cell wall/membrane to be the major target(s) of HNP-1. Received: 7 January 1999 / Accepted: 15 February 1999  相似文献   

17.
IL-10 is a potent immunomodulatory cytokine that affects innate and acquired immune responses. The immunological consequences of IL-10 production during pulmonary tuberculosis (TB) are currently unknown, although IL-10 has been implicated in reactivation TB in humans and with TB disease in mice. Using Mycobacterium tuberculosis-susceptible CBA/J mice, we show that blocking the action of IL-10 in vivo during chronic infection stabilized the pulmonary bacterial load and improved survival. Furthermore, this beneficial outcome was highly associated with the recruitment of T cells to the lungs and enhanced T cell IFN-gamma production. Our results indicate that IL-10 promotes TB disease progression. These findings have important diagnostic and/or therapeutic implications for the prevention of reactivation TB in humans.  相似文献   

18.
Recent studies have implicated a family of mammalian Toll-like receptors (TLR) in the activation of macrophages by Gram-negative and Gram-positive bacterial products. We have previously shown that different TLR proteins mediate cellular activation by the distinct CD14 ligands Gram-negative bacterial LPS and mycobacterial glycolipid lipoarabinomannan (LAM). Here we show that viable Mycobacterium tuberculosis bacilli activated both Chinese hamster ovary cells and murine macrophages that overexpressed either TLR2 or TLR4. This contrasted with Gram-positive bacteria and Mycobacterium avium, which activated cells via TLR2 but not TLR4. Both virulent and attenuated strains of M. tuberculosis could activate the cells in a TLR-dependent manner. Neither membrane-bound nor soluble CD14 was required for bacilli to activate cells in a TLR-dependent manner. We also assessed whether LAM was the mycobacterial cell wall component responsible for TLR-dependent cellular activation by M. tuberculosis. We found that TLR2, but not TLR4, could confer responsiveness to LAM isolated from rapidly growing mycobacteria. In contrast, LAM isolated from M. tuberculosis or Mycobacterium bovis bacillus Calmette-Guérin failed to induce TLR-dependent activation. Lastly, both soluble and cell wall-associated mycobacterial factors were capable of mediating activation via distinct TLR proteins. A soluble heat-stable and protease-resistant factor was found to mediate TLR2-dependent activation, whereas a heat-sensitive cell-associated mycobacterial factor mediated TLR4-dependent activation. Together, our data demonstrate that Toll-like receptors can mediate cellular activation by M. tuberculosis via CD14-independent ligands that are distinct from the mycobacterial cell wall glycolipid LAM.  相似文献   

19.
A mouse IgG mAb termed P1C3 was raised against A23187-treated human peripheral blood neutrophils and has been shown to recognize an Ag with an apparent molecular mass of 19 kDa, herein named p19. This p19 Ag was weakly expressed at the cell surface of resting human peripheral blood neutrophils and monocytes, but its cell surface expression was dramatically increased upon activation of these cell types with different secretagogues, including FMLP, PMA, and the calcium ionophores A23187 and ionomycin. A large latent pool of p19 molecules became accessible by immunofluorescence flow cytometry after cell permeabilization of resting neutrophils. A practically total translocation of the intracellular pool of this p19 molecule to the plasma membrane was achieved under appropriate cell stimulation, which induced an almost total degranulation of neutrophil secretory granules. The p19 Ag was absent from platelets, PBL, as well as from the human promyelocytic cell line HL-60, the human promonocytic cell line U937, and the human lymphoid cell lines Daudi and Jurkat. The p19 Ag was also expressed by circulating and/or interstitial neutrophils and monocytes in distinct tissues examined. The mAb P1C3 was found to enhance several neutrophil responses, such as chemotaxis, cell adhesion, phagocytosis, and respiratory burst. These data indicate that the mAb P1C3 recognizes an intracellular Ag in human resting mature neutrophils and monocytes, which upon cell activation is translocated to the cell surface and is able to affect cell functionality.  相似文献   

20.
An antigen of Mycobacterium tuberculosis with an m.w. of 38,000 has been isolated by affinity chromatography using a monoclonal antibody. This antibody bound only to an antigen found in M. tuberculosis and Mycobacterium bovis BCG. The specificity of the antigen was tested in a vertical study by immunodetection on western blots reacted with hyperimmune sera against M. tuberculosis, M. bovis, and 10 other Mycobacterium species. The antigen was detected only by antisera to M. tuberculosis and M. bovis. Specificity in cell-mediated immunity was tested by skin tests in guinea pigs sensitized with M. tuberculosis, Mycobacterium intracellulare, and Mycobacterium kansasii and by lymphocyte proliferation tests. The 38-kDa antigen induced positive skin test reactions regardless of the Mycobacterium species used to sensitize the animal. The ability of the 38-kDa antigen to sensitize for cell-mediated immunity was tested by injecting mice with the 38-kDa antigen and challenging their lymphocytes in vitro with various mycobacterial antigens. Lymphocyte proliferation was observed in the presence of 38-kDa antigen, M. tuberculosis sonicate antigen, and tuberculin purified protein derivative and to M. kansasii and M. intracellulare. The 38-kDa antigen may contain a specific epitope detected by serology, but also contains epitopes that are cross-reactive for cellular immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号