首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Versican, a large chondroitin sulphate proteoglycan and hyaluronan (HA), a non-sulphated glycosaminoglycan are major constituents of the pericellular matrix. In many neoplastic tissues, changes in the expression of versican and HA affect tumour progression. Here, we analyse the synthesis of versican and hyaluronan by fibrosarcoma cells, and document how the latter is affected by PDGF-BB, bFGF and TGFB2, growth factors endogenously produced by these cells. Fibrosarcoma cell lines B6FS and HT1080 were utilised and compared with normal lung fibroblasts (DLF). The major versican isoforms expressed by DLF and B6FS cells were V0 and V1. Treatment of B6FS cells with TGFB2 showed a significant increase of V0 and V1 mRNAs. Versican expression in HT1080 cells was not significantly affected by any of the growth factors. In addition, TGFB2 treatment increased versican protein in DLF cells. HA, showed approximately a 2-fold and a 9-fold higher production in DLF cells compared to B6FS and HT1080 cells, respectively. In HT1080 cells, HA biosynthesis was significantly increased by bFGF, whereas, in B6FS cells it was increased by TGFB2 and PDGF-BB. Furthermore, analysis of HA synthases (HAS) expression indicated that HT1080 expressed similar levels of all three HAS isoforms in the following order: HAS2> HAS3> HAS1. bFGF shifted that balance by increasing the abundance of HAS1. The major HAS isoform expressed by B6FS cells was HAS2. PDGF-BB and TGFB2 showed the most prominent effects by increasing both HAS2 and HAS1 isoforms. In conclusion, these growth factors modulated, through upregulation of specific HAS isoforms, HA synthesis, secretion and net deposition to the pericellular matrix.  相似文献   

2.
3.
Versican is a large chondroitin sulfate proteoglycan belonging to the lectican family. Alternative splicing of versican generates at least four isoforms named V0, V1, V2, and V3. We have shown that the versican V1 isoform not only enhanced cell proliferation, but also modulated cell cycle progression and protected the cells from apoptosis. Futhermore, the V1 isoform was able to not only activate proto-oncogene EGFR expression and modulate its downstream signaling pathway, but also induce p27 degradation and enhance CDK2 kinase activity. As well, the V1 isoform down-regulated the expression of the proapoptotic protein Bad. By contrast, the V2 isoform exhibited opposite biological activities by inhibiting cell proliferation and down-regulated the expression of EGFR and cyclin A. Furthermore, V2 did not contribute apoptotic resistance to the cells. In light of these results, we are reporting opposite functions for the two versican isoforms whose expression is differentially regulated. Our studies suggest that the roles of these two isoforms are associated with the subdomains CSbeta and CSalpha, respectively. These results were confirmed by silencing the expression of versican V1 with small interfering RNA (siRNA), which abolished V1-enhanced cell proliferation and V1-induced reduction of apoptosis.  相似文献   

4.
The neovascularization of tissues is accomplished by two distinct processes: de novo formation of blood vessels through the assembly of progenitor cells during early prenatal development (vasculogenesis), and expansion of a pre-existing vascular network by endothelial cell sprouting (angiogenesis), the main mechanism of blood vessel growth in postnatal life. Evidence exists that adult bone marrow (BM)-derived progenitor cells can contribute to the formation of new vessels by their incorporation into sites of active angiogenesis. Aim of this study was to investigate the in vitro self-organizing capacity of human BM mononuclear cells (BMMNC) to induce vascular morphogenesis in a three-dimensional (3D) matrix environment in the absence of pre-existing vessels. Whole BMMNC as well as the adherent and non-adherent fractions of BMMNC were embedded in fibrin gels and cultured for 3-4 weeks without additional growth factors. The expression of hematopoietic-, endothelial-, smooth muscle lineage, and stem cell markers was analyzed by immunohistochemistry and confocal laser-scanning microscopy. The culture of unselected BMMNC in 3D fibrin matrices led to the formation of cell clusters expressing the endothelial progenitor cell (EPC) markers CD133, CD34, vascular endothelial growth factor receptor (VEGFR)-2, and c-kit, with stellar shaped spreading of peripheral elongated cells forming tube-like structures with increasing complexity over time. Cluster formation was dependent on the presence of both adherent and non-adherent BMMNC without the requirement of external growth factors. Developed vascular structures expressed the endothelial markers CD34, VEGFR-2, CD31, von Willebrand Factor (vWF), and podocalyxin, showed basement-membrane-lined lumina containing CD45+ cells and were surrounded by alpha-smooth muscle actin (SMA) expressing mural cells. Our data demonstrate that adult human BM progenitor cells can induce a dynamic self organization process to create vascular structures within avascular 3D fibrin matrices suggesting a possible alternative mechanism of adult vascular development without involvement of pre-existing vascular structures.  相似文献   

5.
The chondroitin sulfate proteoglycan versican is one of the major extracellular components in the developing and adult brain. Here, we show that isoforms of versican play different roles in neuronal differentiation and neurite outgrowth. Expression of versican V1 isoform in PC12 cells induced complete differentiation, whereas expression of V2 induced an aborted differentiation accompanied by apoptosis. V1 promoted neurite outgrowth of hippocampal neurons, but V2 failed to do so. V1 transfection enhanced expression of epidermal growth factor receptor and integrins, and facilitated sustained extracellular signal-regulated kinase/MAPK phosphorylation. Blockade of the epidermal growth factor receptor, beta1 integrin, or Src significantly inhibited neuronal differentiation. Finally, we demonstrated that versican V1 isoform also promoted differentiation of neural stem cells into neurons. Our results have implications for understanding how versican regulates neuronal development, function, and repair.  相似文献   

6.
Versican is a large chondroitin sulfate proteoglycan and belongs to the family of lecticans. Versican possesses two globular domains, G1 and G3 domain, separated by a CS-attachment region. The CS-attachment region present in the middle region is divided into two spliced domains named CSalpha and beta. Alternative splicing of versican generates at least four versican isoforms named V0, V1, V2, and V3. We have successfully cloned the full-length cDNA of chick versican isoforms V1 and V2 and found that versican isoform V1 induced mesenchymal-epithelial transition in NIH3T3 cells. Mesenchymal-epithelial transition induced by V1 in NIH3T3 cells is characterized by expression of E-cadherin and occludin, two epithelial markers, and reduced expression of fibroblastic marker vimentin (Sheng et al., 2006, Mol Biol Cell. 17, 2009-2020). In the present studies, we found that versican V1 isoform not only induced cell transition, but also increased intercellular communication via gap junction channels composed of connexin proteins. Our results showed that V1 induces plasma membrane localization of connexin 43, resulting in increased cell communication. This was further confirmed by blocking assays. Gap junctions mediated the transfer of small cytoplasmic molecules and the diffusion of second messenger molecules between adjacent cells. The ability of versican in regulating gap junction implied a potential role of versican in coordinating functions.  相似文献   

7.
8.
Versican, a ubiquitous component of the extracellular matrix (ECM), accumulates both in tumor stroma and cancer cells and is highly regulated by various cytokines. The aberrant expression of versican and its isoforms is known to modulate cell proliferation, differentiation, and migration, all of which are features of the invasion and metastasis of cancer; versican is also known to favour the homeostasis of the ECM. Interleukin-11 (IL-11) is an important cytokine that exhibits a wide variety of biological effects in gastric cancer development. Here, we analysed the expression of versican isoforms and found that the major isoforms expressed by both gastric carcinoma tissue and gastric cell lines were V0 and V1, and V1 was significantly higher in gastric carcinoma tissue. The treatment of the gastric cell lines AGS and MKN45 with rhIL-11 resulted in a significant increase in the expression of V0 and V1. Exogenous IL-11 increased migration in AGS and MKN45 cells, whereas these effects were reversed when the expression of V0 and V1 were abolished by siRNA targeting versican V0/V1. Collectively, these findings suggest that the abnormally expressed versican and its isoforms participate, at least in part, in the progress of gastric carcinoma triggered by IL-11.  相似文献   

9.
Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection.  相似文献   

10.
Versican is a large extracellular chondroitin sulfate proteoglycan that belongs to the family of lecticans. Alternative splicing of versican generates at least four isoforms named V0, V1, V2, and V3. We show here that ectopic expression of versican V1 isoform induced mesenchymal-epithelial transition (MET) in NIH3T3 fibroblasts, and inhibition of endogenous versican expression abolished the MET in metanephric mesenchyme. MET in NIH3T3 cells was demonstrated by morphological changes and dramatic alterations in both membrane and cytoskeleton architecture. Molecular analysis showed that V1 promoted a "switch" in cadherin expression from N- to E-cadherin, resulting in epithelial specific adhesion junctions. V1 expression reduced vimentin levels and induced expression of occludin, an epithelial-specific marker, resulting in polarization of V1-transfected cells. Furthermore, an MSP (methylation-specific PCR) assay showed that N-cadherin expression was suppressed through methylation of its DNA promoter. Exogenous expression of N-cadherin in V1-transfected cells reversed V1's effect on cell aggregation. Reduction of E-cadherin expression by Snail transfection and siRNA targeting E-cadherin abolished V1-induced morphological alteration. Transfection of an siRNA construct targeting versican also reversed the changed morphology induced by V1 expression. Silencing of endogenous versican prevented MET of metanephric mesenchyme. Taken together, our results demonstrate the involvement of versican in MET: expression of versican is sufficient to induce MET in NIH3T3 fibroblasts and reduction of versican expression decreased MET in metanephric mesenchyme.  相似文献   

11.
Long interspersed nuclear element-1 (LINE-1, L1) is a retrotransposon which affects the human genome by a variety of mechanisms. While LINE-1 expression is suppressed in the most somatic human cells, LINE-1 elements are activated in human cancer. Recently, high accumulation of LINE-1-encoded ORF1p and ORF2p in endothelial cells of mature human blood vessels was described. Here, we demonstrate that LINE-1 de novo retrotransposition events lead to a reduction of endothelial cell proliferation and migration in a porcine aortic endothelial (PAE) cell model. Cell cycle studies show a G0/G1 arrest in PAE cells harboring LINE-1 de novo retrotransposition events. Remarkably, in in situ analysis LINE-1-encoded ORF2p was not detectable in tumor blood vessels of different human organs while vascular endothelial cells of corresponding normal organs strongly expressed LINE-1 ORF2p. Quantitative RT-PCR analysis revealed that LINE-1 de novo retrotransposition influences selectively the expression of some angiogenic factors such as VEGF and Tie-2. Thus, our data suggest that LINE-1 de novo retrotransposition events might suppress angiogenesis and tumor vascularisation by reducing the angiogenic capacity of vascular endothelial cells.  相似文献   

12.
Hematopoietic stem cells (HSC) are multi-potent cells that function to generate a lifelong supply of all blood cell types. During mammalian embryogenesis, sites of hematopoiesis change over the course of gestation: from extraembryonic yolk sac and placenta, to embryonic aorta-gonad-mesonephros region, fetal liver, and finally fetal bond marrow where HSC reside postnatally. These tissues provide microenviroments for de novo HSC formation, as well as HSC maturation and expansion. Within adult bone marrow, HSC self-renewal and differentiation are thought to be regulated by two major cellular components within their so-called niche: osteoblasts and vascular endothelial cells. This review focuses on HSC generation within, and migration to, different tissues during development, and also provides a summary of major regulatory factors provided by osteoblasts and vascular endothelial cells within the adult bone marrow niche.  相似文献   

13.
Versican is an extracellular matrix proteoglycan produced by many cells. Although versican is generally known as a large chondroitin sulfate proteoglycan (CSPG), the smallest splice variant, V3, consists only of the amino- and carboxy-terminal globular domains and is therefore predicted to be a small glycoprotein, lacking CS chains. The large size, negative charge, and ability of versican variants to form pericellular coats with hyaluronan are responsible for many of its effects. V3, lacking the large size and high charge density, but retaining the hyaluronan-binding domain of the larger isoforms, may have different effects on cell phenotype. To determine whether V3 alters cell phenotype, Fisher rat arterial smooth muscle cells (ASMCs), which express the larger CSPG versican splice forms (V0 and V1) were retrovirally transduced with the rat V3 cDNA. Northern analysis for versican RNAs confirmed that cells transduced with V3 retrovirus, but not cells tranduced with the empty vector, expressed RNA of the size expected for V3/neo(r) bicistronic RNA. V3 overexpressing cells were more spread on tissue culture plastic, had a smaller length-to-breadth ratio and were more resistant to release from the culture dish by trypsin. Interference reflection microscopy of sparsely plated cells showed larger areas of close contact between the V3 expressing cells and the coverslip, in comparison to control cells. Focal contacts in the periphery of V3 expressing cells were larger. Growth and migration studies revealed that V3 transduced cells grow slower and migrate a shorter distance in a scratch wound assay. The increased adhesion and the inhibition of migration and proliferation resulting from V3 overexpression are the opposites of the known and predicted effects of the other variants of versican. V3 may exert these effects through changes in pericellular coat formation, either by competing with larger isoforms for hyaluronan-binding, or by altering other components of the pericellular matrix.  相似文献   

14.
We previously showed the selective expression of the chondroitin sulfate proteoglycans versican V0 and V1 in barrier tissues that impede the migration of neural crest cells during embryonic trunk development (Landolt, R. M., Vaughan, L., Winterhalter, K. H., and Zimmermann, D. R. (1995) Development 212, 2303-2312). To test for an active involvement of these isoforms in the guidance process, we have now established protocols to isolate intact versican V0 and V1 in quantities sufficient for functional experiments. Using stripe choice assays, we demonstrate that pure preparations of either a mixture of versican V0/V1 or V1 alone strongly inhibit the migration of multipotent Sox10/p75NTR double-positive early neural crest stem cells on fibronectin by interfering with cell-substrate adhesion. We show that this inhibition is largely core glycoprotein-dependent, as the complete removal of the glycosaminoglycan chains has only a minor effect on the inhibitory capacity. Our findings support the notion that versican variants V0 and V1 act, possibly in concert with other inhibitory molecules such as aggrecan and ephrins, in directing the migratory streams of neural crest cells to their appropriate target tissues.  相似文献   

15.
Versican is a proteoglycan expressed in the extracellular matrix, where it regulates a variety of cell activities and affects tumor development. With alternative splicing, there are four versican isoforms, denoted V0, V1, V2 and V3. The V2 isoform is highly expressed in the mature brain but its function in the mature brain has not yet been elucidated. Since brain tumors are among the most angiogenic of human tumors, we investigated whether or not the V2 isoform plays a role in angiogenesis and found that the glioblastoma cell line U87 stably transfected with V2 formed tumors containing extensive vasculature. Although the V2-expressing cells grew slowly, they survived well in serum-free medium. They also displayed high adhesive ability to endothelial cells and facilitated tube-like structure formation. Importantly, fibronectin was up-regulated by V2 and mediated V2 function. Thus, versican V2 could be a potential target for intervention of brain tumor angiogenesis.  相似文献   

16.
A single human myosin light chain kinase gene (MLCK; MYLK)   总被引:7,自引:0,他引:7  
Lazar V  Garcia JG 《Genomics》1999,57(2):256-267
The myosin light chain kinase (MLCK) gene, a muscle member of the immunoglobulin gene superfamily, yields both smooth muscle and nonmuscle cell isoforms. Both isoforms are known to regulate contractile activity via calcium/calmodulin-dependent myosin light chain phosphorylation. We previously cloned from a human endothelial cell (EC) cDNA library a high-molecular-weight nonmuscle MLCK isoform (EC MLCK (MLCK 1) with an open reading frame that encodes a protein of 1914 amino acids. We now describe four novel nonmuscle MLCK isoforms (MLCK 2, 3a, 3b, and 4) that are the alternatively spliced variants of an mRNA precursor that is transcribed from a single human MLCK gene. The primary structure of the cDNA encoding the nonmuscle MLCK isoform 2 is identical to the previously published human nonmuscle MLCK (MLCK 1) (J. G. N. Garcia et al., 1997, Am. J. Respir. Cell Mol. Biol. 16, 489-494) except for a deletion of nucleotides 1428-1634 (D2). The full nucleotide sequence of MLCK isoforms 3a and 3b and partial sequence for MLCK isoform 4 revealed identity to MLCK 1 except for deletions at nucleotides 5081-5233 (MLCK 3a, D3), double deletions of nucleotides 1428-1634 and 5081-5233 (MLCK 3b), and nucleotide deletions 4534-4737 (MLCK 4, D4). Northern blot analysis demonstrated the extended expression pattern of the nonmuscle MLCK isoform(s) in both human adult and human fetal tissues. RT-PCR using primer pairs that were designed to detect specifically nonmuscle MLCK isoforms 2, 3, and 4 deletions (D2, D3, and D4) confirmed expression in both human adult and human fetal tissues (lung, liver, brain, and kidney) and in human endothelial cells (umbilical vein and dermal). Furthermore, relative quantitative expression studies demonstrated that the nonmuscle MLCK isoform 2 is the dominant splice variant expressed in human tissues and cells. Further analysis of the human MLCK gene revealed that the MLCK 2 isoform represents the deletion of an independent exon flanked by 5' and 3' neighboring introns of 0.6 and 7.0 kb, respectively. Together these studies demonstrate for the first time that the human MLCK gene yields multiple nonmuscle MLCK isoforms by alternative splicing of its transcribed mRNA precursor with differential distribution of these isoforms in various human tissues and cells.  相似文献   

17.
18.
19.
Link proteins (LPs) belong to the link-module superfamily, which can stabilize and enhance the binding of lecticans to hyaluronan. We report here the identification and characterization of a novel rat link protein gene (Lp3/Hapln3). The deduced protein sequence shares the typical modular elements of link proteins and has an estimated mass of 39 kDa. Examination of the rat genomic DNA sequence revealed that Lp3/Hapln3 and aggrecan genes were paired on chromosome 1q31. Another LP gene and the lectican gene were also paired at a different locus, as they are in the human and mouse genomes. Immunohistochemical analysis showed the prominent expression of Lp3/Hapln3 in the smooth muscle tissues of the vascular wall and gastrointestinal tract. Further comparative studies revealed that Lp3/Hapln3 was well co-localized with versican around the smooth muscle cells of blood vessels but not around endothelial cells. In vitro experiments using primary cultured rat arterial smooth muscle cells (ASMCs) demonstrated the coordinated up-regulation of Lp3/Hapln3 and versican by platelet-derived growth factor (PDGF). These data were supported by in vivo studies of a mechanical vascular injury model in mice. Altogether, our results suggest that Lp3/Hapln3 is involved, together with versican and hyaluronan, in the formation of the pericellular matrix of vascular smooth muscle cells.  相似文献   

20.

Background

Versican is an extracellular matrix (ECM) proteoglycan that is present in the pericellular environment of most tissues and increases in many different diseases. Versican interacts with cells to influence the ability of cells to proliferate, migrate, adhere and assemble an ECM.

Scope of review

The structure of the versican molecule is briefly reviewed and studies highlighting those factors that promote versican synthesis and degradation and their impact on cell phenotype in disease are discussed. Particular attention is given to vascular disease, but other diseases where versican is important are covered as well, most notably different forms of cancers. Attention is given to mechanisms(s) by which versican influences cell behaviors through either direct or indirect processes. Versican produced by either stromal cells or myeloid cells can have a major impact influencing immunity and inflammation. Finally, studies controlling versican accumulation that either delay or inhibit the progression of disease will be highlighted.

Major conclusions

Versican is one component of the ECM that can influence the ability of cells to proliferate, migrate, adhere, and remodel the ECM. Targeting versican as a way to control cell phenotype offers a novel approach in the treatment of disease.

Significance

ECM molecules such as versican contribute to the structural integrity of tissues and interact with cells through direct and indirect means to regulate, in part, cellular events that form the basis of disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号