首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A lysosomal fraction was separated by density-gradient centrifugation from a highly purified human polymorphonuclear leucocyte suspension. 2. Some 23 different lysosomal enzymes were assayed for activity in the presence of various concentrations of glycosaminoglycans. 3. The 21 acid hydrolases assayed were strongly inhibited to different degrees by low (0-12 mmol/l) concentrations of glycosaminoglycans in a pH-dependent manner. Thus inhibitions were stronger below pH4.5, with activity returning to control values at about pH5.0. 4. On a molar basis, the inhibitory activity for the several glycosaminoglycans studied was: heparin greater than chondroitin sulphate greater than hyaluronic acid. 5. Once the glycosaminoglycan-acid hydrolase complex was formed, it was partially dissociated by slight elevations in the pH of the incubation medium, by increasing the ionic strength of the incubation medium, or by adding several cationic proteins (e.g. histone, protamine). 6. As leucocytic lysosomes contain large amounts of chondroitin sulphate, and have a strongly acid intragranular pH, we suggest that glycosaminoglycans may modify lysosomal function through the formation of complexes with lysosomal enzymes, by inhibiting the digestive activity of the acid hydrolases when the intralysosomal pH is below their pI.  相似文献   

2.
Significant differences occur between the interaction of several sulphated glycosaminoglycans with a particular lysosomal protein, leading to inhibition in the case of lysosomal enzymes. The order of strength of inhibition at pH4 was: heparin greater than chondroitin 4-sulphate = chondroitin 6-sulphate greater than dermatan sulphate.  相似文献   

3.
Confluent monolayer cultures of rabbit corneal endothelial and stromal cells were incubated independently with [35S]sulphate and [3H]glucosamine for 3 days. AFter incubation, labelled glycosaminoglycans were isolated from the growth medium and from a cellular fraction. These glycosaminoglycans were further characterized by DEAE-cellulose column chromatography and by sequential treatment with various glycosamino-glycan-degrading enzymes. Both endothelial and stromal cultures synthesized hyaluronic acid as the principal product. The cell fraction from the stromal cultures, however, had significantly less hyaluronic acid than that from the endothelial cultures. In addition, both types of cells synthesized a variety of sulphated glycosaminoglycans. The relative amounts of each sulphated glycosaminoglycan in the two cell lines were similar, with chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate as the major components. Heparan sulphate was present in smaller amounts. Keratan sulphate was also identified, but only in very small amounts (1-3%). The presence of dermatan sulphate and the high content of hyaluronic acid are similar to the pattern of glycosaminoglycans seen in regenerating or developing tissues, including cornea.  相似文献   

4.
It was found that both normal human myometrium and uterine leiomyoma contain several glycosaminoglycans. In contrast to many normal and tumour tissues the amount of hyaluronic acid is very low and the proportional amount of sulphated glycosaminoglycans is distinctly higher. It is of interest that heparan sulphate is the major glycosaminoglycan component both in normal myometrium, and in leiomyoma. The amount of hyaluronic acid in myometrium and in the leiomyoma is very low. No significant change in hyaluronate content was observed during the tumour growth. In contrast to that the amount of some sulphated glycosaminoglycans (heparan sulphate, keratan sulphate, chondroitin sulphates and heparin) distinctly increased. It is suggested that some of the GAGs participate in the creation of a storage depot for biologically active molecules (growth factors, enzymes) which are thereby stabilized and protected. Hydrolytic degradation of some GAGs may result in the release of some cytokines which may promote the tumour growth and stimulate collagen biosynthesis by tumour cells.  相似文献   

5.
1. The incorporation of [(35)S]sulphate in vivo into the acid-soluble intermediates extracted from young rat skin showed three sulphated hexosamine-containing components. 2. The rates of synthesis of these components were determined in vivo by measuring the incorporation of radioactivity from [U-(14)C]glucose into their isolated hexosamine moieties. 3. The incorporation of radioactivity from [U-(14)C]glucose into the isolated hexosamine and uronic acid moieties of the acid glycosaminoglycans was also measured. These results, combined with those obtained on the intermediary pathways of hexosamine and uronic acid biosynthesis previously determined in this tissue, indicated that the acid-soluble sulphated hexosamine-containing components were not precursors of the sulphated hexosamine found in the acid glycosaminoglycans. 4. The rates of synthesis of the acid glycosaminoglycan fractions were calculated from the incorporation of radioactivity from [U-(14)C]glucose into the hexosamine moiety. The sulphated components containing principally dermatan sulphate, chondroitin 6-sulphate and in smaller amounts, chondroitin 4-sulphate, heparan sulphate and heparin appeared to be turning over about twice as rapidly as hyaluronic acid and about four times as rapidly as the small keratan sulphate fraction. The relative rates of synthesis of the sulphated glycosaminoglycans were calculated from the incorporation of [(35)S]sulphate and were in agreement with those from (14)C-labelling studies.  相似文献   

6.
The inhibiting effect of sulphated and nonsulphated glycosaminoglycans and polysaccharides on the normal outgrowth of capillaries was tested in the chick embryo chorioallantoic membrane (CAM) with and without the presence of hydrocortisone. An antiangiogenic response to 50 µg of heparin and heparan sulphate (without hydrocortisone present) was observed in 38.8% and 23.1% of the CAMS, respectively, while the antiangiogenic response rate for dermatan sulphate, chondroitin sulphate A or C, hyaluronic acid and keratan sulphate was 15.9–0%. All sulphated homopolysaccharides tested were more effective than the naturally occurring glycosaminoglycans. Nonsulphated dextran and (methyl) cellulose had no antiangiogenic effect, while largely desulphated heparin retained such an effect. Hydrocortisone generally improved the antiangiogenic effect, a 100% response was obtained when it was combined with cellulose sulphate or fucoidan (polyfucose sulphate derived from marine algae), but the antiangiogenic effect of the largely desulphated heparin was unaffected by the presence of hydrocortisone. The results show that different polysulphated polysaccharides also have an antiangiogenic effect, without the addition of corticosteroids. The effect was apparently independent of their degree of sulphation, but the glycosidic structure may be of critical importance.  相似文献   

7.
The cysteine protease legumain participates in several biological and pathological processes including tumour invasion and metastasis. Legumain is synthesized as a zymogen and undergoes pH-dependent autoactivation of the proform in order to reach an enzymatically active form. Here we demonstrate that the naturally occurring polyanionic glycosaminoglycans (GAGs) chondroitin 4-sulphate (C4S), chondroitin 6-sulphate (C6S), chondroitin 4,6-sulphate (C4,6S), heparin, heparan sulphate (HS) as well as chondroitin sulphate (CS)-derived decasaccharides accelerated the autocatalytic activation of prolegumain through ionic interactions in a concentration-, size- and time-dependent manner at pH 4.0. In contrast, at pH 5.0 only C4S and C4,6S were able to promote prolegumain activation, while CS-derived decasaccharides, C6S, heparin and HS lost their effect at this pH.  相似文献   

8.
Cultured human fibroblasts contain two sialidases that degrade gangliosides such as GM3: a lysosomal activity that appears identical with the activity towards water-soluble substrates and that is deficient in the genetic lysosomal disorder sialidosis, and another enzyme that seems localized on the external surface of the plasma membrane. In this report we show that both enzymes can be differentiated in the presence of each other by choice of the detergent used for activation, and also by the inhibitory action of some polyanionic compounds such as sulphated glycosaminoglycans. The lysosomal ganglioside GM3 sialidase is greatly stimulated by sodium glycodeoxycholate and, to lesser degrees, by sodium glycocholate and sodium cholate. The ganglioside GM3 sialidase of the plasma membrane is not measurably active under the conditions of the lysosomal enzyme but is specifically activated by the non-ionic detergent Triton X-100. The glycodeoxycholate-stimulated, but not the Triton-activated, ganglioside GM3 sialidase activity was profoundly diminished in cell lines from patients with the lysosomal disorders sialidosis and galactosialidosis; however, both activities were normal in fibroblasts from patients with mucolipidosis IV, previously thought to be a ganglioside sialidase deficiency disorder. Both the lysosomal and the plasma membrane ganglioside GM3 sialidases were inhibited by sialic acids, suramin, dextran sulphate and sulphated glycosaminoglycans. Among the latter, heparin and heparan sulphate showed a much higher inhibitory potency towards the plasma membrane ganglioside GM3 sialidase than towards the lysosomal onw.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A variety of sulphated polyanions in addition to heparin and dermatan sulphate stimulate the inhibition of thrombin by heparin cofactor II (HCII). Previous investigations indicated that the binding sites on HCII for heparin and dermatan sulphate overlap but are not identical. In this study we determined the concentrations (IC50) of various polyanions required to stimulate thrombin inhibition by native recombinant HCII in comparison with three recombinant HCII variants having decreased affinity for heparin (Lys-173-->Gln), dermatan sulphate (Arg-189-->His), or both heparin and dermatan sulphate (Lys-185-->Asn). Pentosan polysulphate, sulphated bis-lactobionic acid amide, and sulphated bis-maltobionic acid amide resembled dermatan sulphate, since their IC50 values were increased to a much greater degree (>/=8-fold) by the mutations Arg-189-->His and Lys-185-->Asn than by Lys-173-->Gln (Gln and Lys-185-->Asn (>/=6-fold) than by Arg-189-->His (相似文献   

10.
Abstract— The kinetics of canine hypothalamic tyrosine hydroxylase were studied in the presence of various ions and sulphated mucopolysaccharides. Enzymic activity was dependent on ionic strength, a specific sulphate effect and the presence of the highly sulphated mucopolysaccharide, heparin. Whereas both sulphate and heparin activated tyrosine hydroxylase by increasing Vmax heparin, but not sulphate, also increased the affinity of the enzyme for the synthetic cofactor, 2-amino-4-hydroxy-6,7-dirnethyl-5,6,7,8-tetrahydropteridine, by nearly an order of magnitude. Other rnucopolysaccharides, such as chondroitin sulphate and hyaluronic acid, were not effective as activators of tyrosine hydroxylase. The allosteric activation of tyrosine hydroxylase by heparin may serve to 'sensitize' the enzyme to low levels of its end product, norepinephrine.  相似文献   

11.
Abstract— The uronic acid containing glycosaminoglycans (GAGs) were isolated from the brains of 1-year-old and 4-year-old kwashiorkor children and characterised by constituent analyses. A marked reduction is the total GAG concentration of brain was noticed in both cases of kwashiorkor. In the 1-year-old kwashiorkor brain, hyaluronic acid is the most predominant GAG (73.5 per cent) whereas heparan sulphate, chondroitin sulphates and low sulphated chondroitin sulphate constituted less than 10 per cent. In the 4-year-old kwashiorkor brain, the proportion of hyaluronic acid was 27.5 per cent, low sulphated chondroitin sulphate 31.2 per cent, chondroitin sulphates 28.3 per cent and heparan sulphate 10 per cent. This marked reduction in the concentration as well as qualitative changes in GAG in protein-calorie malnutrition as compared to the normal is discussed in relation to brain function.  相似文献   

12.
Neospora caninum and Toxoplasma gondii are characterised by a very low host cell specificity, thus they are able to infect a wide range of different cells in vivo and in vitro. Infection of the host cell by tachyzoites is a process which is preceded by adhesion onto the host cell surface. The receptors on the host cell surface which would allow N. caninum to establish a physical interaction have not been investigated so far. Here we report the role of host cell surface proteoglycans as receptors for the adhesion of N. caninum tachyzoites to Vero cell monolayers. We found that N. caninum tachyzoites, similar to T. gondii tachyzoites, can bind to sulphated proteoglycans which naturally occur on the surface of mammalian cells, including heparin/heparan sulphate, chondroitin sulphates, as well as to the artificially sulphated glycosaminoglycan dextran sulphate. Although removal of heparan sulphate from the host cell surface results in decreased adhesion of T. gondii tachyzoites, binding of N. caninum tachyzoites is not affected by this treatment. Conversely, enzymatic removal of chondroitin sulphate A, B and C decreases N. caninum adhesion but does not affect T. gondii binding to Vero cells. Thus, T. gondii and N. caninum tachyzoites exhibit differential adhesive properties with regard to host cell surface glycosaminoglycans. Additional experiments employing Triton X-100 solubilised NcSRS2 and NcMIC3 showed that NcSRS2 binds to the host cell surface, but not through those sulphated glycosaminoglycans investigated in this study. In contrast, NcMIC3 binding to the host cell surface is dramatically influenced by these modifications. Further experiments showed that the NcMIC3 adhesive motif comprised of four consecutive epidermal growth factor-like domains expressed as a recombinant protein exhibits a high binding activity for sulphated glycosaminoglycans. These results suggest that host cell surface proteoglycan interaction of N. caninum differs from that observed for T. gondii, and that the epidermal growth factor-like adhesive motif in NcMIC3 could be involved in this process.  相似文献   

13.
Summary The distribution of hyaluronic acid and proteoglycans in bovine thoracic aorta was studied by Alcian Blue staining of frozen tissue sections under controlled electrolyte conditions with and without prior enzymic digestion. Some sections were digested with chondroitinase ABC, testicular hyaluronidase or bacterial collagenase and subsequent staining permitted conclusions to be drawn about the distribution of specific glycosaminoglycans within the tissue. The total glycosaminoglycan content was maximal in the intima and decreased across the arterial wall to the outermost adventitial layer. The content of proteoglycan containing chondroitin sulphate and/or dermatan sulphate chains paralleled this distribution. However, other glycosaminoglycans also contributed significantly to staining, although there was no evidence for any appreciable concentration of heparin or highly sulphated heparan sulphate.Several experiments indicated that proteoglycan containing chondroitin sulphate and/or dermatan sulphate was associated with elastic laminae which were often seen stained along their periphery. Hyaluronic acid was present at significant concentrations in all locations of the aorta and there was evidence for a similar distribution of heparan sulphate which was possibly also present at a high concentration in the endothelium. Staining of sections after treatment with 4m guanidinium chloride confirmed that this extractant removed most of the proteoglycan from the tissue section.  相似文献   

14.
Heparin enhances the rate of binding of fibronectin to collagen.   总被引:16,自引:1,他引:15       下载免费PDF全文
125I-labelled fibronectin is shown to bind to both native and denatured collagen immobilized on Sephadex beads in reactions that exhibit different kinetics. The rates of both reactions were enhanced by the presence of heparin or highly sulphated dextran sulphate but not by other glycosaminoglycans or dextran sulphates having low sulphate contents.  相似文献   

15.
Summary The glycosaminoglycans secreted into the matrices associated with fractures of the rabbit tibia healing under stable and unstable mechanical conditions have been characterized histochemically using the dye Alcian Blue at pH 5.7 in the presence of increasing concentrations of magnesium chloride, and after enzymatic extractions. These results are compared with those of immunohistochemical experiments using monoclonal antibodies which recognize epitopes specific to various glycosaminoglycans.The results indicate that the fibrous tissues, including those of the cavities of the cancellous bone and periosteum, possess hyaluronate and chondroitin sulphate, but the amounts present are small. The glycosaminoglycans detected in the cortical bone are located mainly around the osteocyte lacunae where chondroitin and keratan sulphates are found. The developing trabeculae of cancellous bone in the callus contain chondroitin and keratan sulphates, but as the trabeculae mature, these glycosaminoglycans are no longer present throughout the matrix; they are found particularly around the osteocyte lacunae.The cartilage in the callus of mechanically unstable fractures contains chondroitin, chondroitin-4- and 6-sulphates and keratan sulphate, though their distribution is variable. The small, transient areas of cartilage in the callus of mechanically stable fractures also contain those glycosaminoglycans, but they appear to be less highly sulphated.The mechanical stability of the fractures appears to affect the amount and degree of sulphation of the glycosaminoglycans, rather than the types of glycosaminoglycan produced. The glycosaminoglycans produced during fracture healing are compared with those produced during embryonic development and other healing processes.  相似文献   

16.
We have previously shown that heparin is a potent inhibitor of a mammalian DNA topoisomerase I. We have now investigated the mechanism of its inhibition. This was carried out first by scrutinizing the structural features of heparin molecules responsible for the inhibition. Commercial heparin preparation was fractionated by antithrombin III-Sepharose into non-adsorbed, low-affinity and high-affinity fractions, of which only the high-affinity fraction of heparin is known to contain a specific oligosaccharide sequence responsible for the binding to antithrombin III. These fractions all exhibited essentially similar inhibitory activities. Furthermore, when chemically sulphated to an extent comparable with or higher than heparin, otherwise inactive glycosaminoglycans such as heparan sulphate, chondroitin 4-sulphate, dermatan sulphate and neutral polysaccharides such as dextran and amylose were converted into potent inhibitors. Sulphated dermatan sulphate, one of the model compounds, was further shown to bind competitively to the same sites on the enzyme as heparin. These observations strongly suggested that topoisomerase inhibition by heparin is attributable primarily, if not entirely, to the highly sulphated polyanionic nature of the molecules. In a second series of experiments we examined whether heparin inhibits only one or both of the topoisomerase reactions, i.e. nicking and re-joining. It was demonstrated that both reactions were inhibited by heparin, but the nicking reaction was more severely affected than was the re-joining reaction.  相似文献   

17.
The glycosaminoglycans of human cultured normal glial and malignant glioma cells were studied. [35S]Sulphate or [3H]glucosamine added to the culture medium was incorporated into glycosaminoglycans; labelled glycosaminoglycans were isolated by DEAE-cellulose chromatography or gel chromatography. A simple procedure was developed for measurement of individual sulphated glycosaminoglycans in cell-culture fluids. In normal cultures the glycosaminoglycans of the pericellular pool (trypsin-susceptible material), the membrane fraction (trypsin-susceptible material of EDTA-detached cells) and the substrate-attached material consisted mainly of heparan sulphate. The intra- and extra-cellular pools showed a predominance of dermatan sulphate. The net production of hyaluronic acid was low. The accumulation of 35S-labelled glycosaminoglycans in the extracellular pool was essentially linear with time up to 72h. The malignant glioma cells differed in most aspects tested. The total production of glycosaminoglycans was much greater owing to a high production of hyaluronic acid and hyaluronic acid was the major cell-surface-associated glycosaminoglycan in these cultures. Among the sulphated glycosaminoglycans chondroitin sulphate, rather than heparan sulphate, was the predominant species of the pericellular pool. This was also true for the membrane fraction and substrate-attached material. Furthermore, the accumulation of extracellular 35S-labelled glycosaminoglycans was initially delayed for several hours and did not become linear with time until after 24 h of incubation. The glioma cells produced little dermatan sulphate and the dermatan sulphate chains differed from those of normal cultures with respect to the distribution of iduronic acid residues. The observed differences between normal glial and malignant glioma cells were not dependent on cell density; rather they were due to the malignant transformation itself.  相似文献   

18.
The secretory enzyme extracellular superoxide dismutase (EC-SOD) occurs in at least three forms, which differ with regard to heparin affinity: A lacks affinity, B has intermediate affinity, and C has relatively strong affinity. The affinity of EC-SOD C for various sulphated glycosaminoglycans (GAGs) was assessed (a) by determining the concentration of NaCl required to release the enzyme from GAG-substituted Sepharose 4B and (b) by determining the relative potencies of the GAGs to release EC-SOD C from heparan sulphate-Sepharose 4B. Both methods indicated the same order of affinity. Heparin bound EC-SOD C about 10 times as avidly as the studied heparan sulphate preparation, which in turn was 10 and 150 times as efficient as dermatan sulphate and chondroitin sulphate respectively. Chondroitin sulphate showed weak interaction with EC-SOD C at physiological ionic strength. Heparin subfractions with high or low affinity for antithrombin III were equally efficient. The binding of EC-SOD C to heparin-Sepharose was essentially independent of pH in the range 6.5-9; below pH 6.5 the affinity increased, and beyond pH 9.5 there was a precipitous fall in affinity. The inhibitory effect of NaCl on the binding of EC-SOD C to GAGs indicates that the interaction is of electrostatic nature. EC-SOD C carries a negative net charge at neutral pH, and it is suggested that the binding occurs between the negative charges of the GAG sulphate groups and a structure in the C-terminal end of the enzyme that has a cluster of positive charges. These results are compatible with the notion that heparan sulphate proteoglycans on cell surfaces or in the intercellular matrix may serve to bind EC-SOD C in tissues.  相似文献   

19.
Hydrazinolysis of heparin and other glycosaminoglycans.   总被引:2,自引:0,他引:2       下载免费PDF全文
Heparin, carboxy-group-reduced heparin, several sulphated monosaccharides and disaccharides formed from heparin, and a tetrasaccharide prepared from chondroitin sulphate were treated at 100 degrees C with hydrazine containing 1% hydrazine sulphate for periods sufficient to cause complete N-deacetylation of the N-acetylhexosamine residues. Under these hydrazinolysis conditions both the N-sulphate and the O-sulphate substituents on these compounds were completely stable. However, the uronic acid residues were converted into their hydrazide derivatives at rates that depended on the uronic acid structures. Unsubstituted L-iduronic acid residues reacted much more slowly than did unsubstituted D-glucuronic acid or 2-O-sulphated L-iduronic acid residues. The chemical modification of the carboxy groups resulted in a low rate of C-5 epimerization of the uronic acid residues. The hydrazinolysis reaction also caused a partial depolymerization of heparin but not of carboxy-group-reduced heparin. Treatment of the hydrazinolysis products with HNO2 at either pH 4 or pH 1.5 or with HIO3 converted the uronic acid hydrazides back into uronic acid residues. The use of the hydrazinolysis reaction in studies of the structures of uronic acid-containing polymers and the implications of the uronic acid hydrazide formation are discussed.  相似文献   

20.
1. A cell-free system derived from E. coli has been used in this study. The process of peptide bond formation was assessed with the aid of the puromycin reaction, which is catalyzed by peptidyltransferase. 2. This reaction is inhibited by heparin, in contrast, this reaction is activated by hyaluronic acid. 3. The presence of heparin decreases the percentage of formed initiation complex (complex C), but hyaluronic acid, chondroitin sulphate and keratan sulphate have no effect on the formation of complex C. 4. From other types of glycosaminoglycans, only hyaluronic acid increases the stability of active complex C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号