首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ADP-ribose) polymerase (PARP) knockout mice are resistant to murine models of human diseases such as cerebral and myocardial ischemia, traumatic brain injury, diabetes, Parkinsonism, endotoxic shock and arthritis, implicating PARP in the pathogenesis of these diseases. Potent selective PARP inhibitors are therefore being evaluated as novel therapeutic agents in the treatment of these diseases. Inhibition or depletion of PARP, however, increases genomic instability in cells exposed to genotoxic agents. We recently demonstrated the presence of a genomically unstable tetraploid population in PARP–/– fibroblasts and its loss after stable transfection with PARP cDNA. To elucidate whether the genomic instability is attributable to PARP deficiency or lack of PARP activity, we investigated the effects of PARP inhibition on development of tetraploidy. Immortalized wild-type and PARP–/– fibroblasts were exposed for 3 weeks to 20 µM GPI 6150 (1,11b-dihydro-[2H]benzopyrano[4,3,2-de]isoquinolin-3-one), a novel small molecule specific competitive inhibitor of PARP (Ki = 60 nM) and one of the most potent PARP inhibitors to date (IC50 = 0.15 µM). Although GPI 6150 initially decreased cell growth in wild-type cells, there was no effect on cell growth or viability after 24 h. GPI 6150 inhibited endogenous PARP activity in wild-type cells by ~91%, to about the residual levels in PARP–/– cells. Flow cytometric analysis of unsynchronized wild-type cells exposed for 3 weeks to GPI 6150 did not induce the development of tetraploidy, suggesting that, aside from its catalytic function, PARP may play other essential roles in the maintenance of genomic stability.  相似文献   

2.
We have investigated the role of poly(ADP-ribose) polymerase (PARP) activation in rat brain in a model of sublethal transient global ischemia. Adult male rats were subjected to 15 min of ischemia with brain temperature reduced to 34 degrees C, followed by 1, 2, 4, 8, 16, 24, and 72 h of reperfusion. PARP mRNA expression was examined in the hippocampus using quantitative RT-PCR, northern blot analysis, and in situ hybridization. Protein expression was assessed using western blot analysis. PARP enzymatic activity was investigated by measuring nuclear [3H]NAD incorporation. The presence of poly(ADP-ribose) polymers was assessed immunocytochemically. Although PARP mRNA and protein expressions were not altered after ischemia, enzymatic activity was increased 4.37-fold at 1 h (p < 0.05 vs. sham) and 1.73-fold (p < 0.05 vs. sham) at 24 h of reperfusion. Immunostaining demonstrated the presence of poly(ADP-ribose) polymers in CA1 neurons. Cellular NAD+ levels were not significantly altered at any time point. Furthermore, systemic administration of 3-aminobenzamide (30 mg/kg), a PARP inhibitor, prevented the increase in PARP activity at 1 and 24 h of reperfusion, significantly decreased the number of surviving neurons in the hippocampal CA1 region 72 h after ischemia (p < 0.01 vs. sham), and increased DNA single-strand breaks assessed as DNA polymerase I-mediated biotin-dATP nick-translation (PANT)-positive cells (p < 0.01 vs. sham). Furthermore, using an in vitro DNA repair assay, 3-aminobenzamide (30 mg/kg) was shown to block DNA base excision repair activity. These data suggest that the activation of PARP, without subsequent NAD+ depletion, following mild transient ischemia may be neuroprotective in the brain.  相似文献   

3.
Accumulating data support the view that sepsis is associated with an acquired intrinsic derangement in the ability of cells to consume O(2), a phenomenon that has been termed "cytopathic hypoxia." We sought to use an in vitro "reductionist" model system using cultured cells stimulated with proinflammatory cytokines to test the hypothesis that cytopathic hypoxia is mediated, at least in part, by depletion of intracellular levels of NAD(+)/NADH secondary to activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP). We measured O(2) consumption by Caco-2 enterocytes growing on microcarrier beads after cells were incubated for 24 h under control conditions or with cytomix, a mixture of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma. Immunostimulated cells consumed O(2) at about one-half the rate of control cells, but this effect was largely prevented if any one of the following pharmacological agents was present during the period of incubation with cytomix: 4,5-dihydroxy-1,3-benzene disulfonic acid, a superoxide radical anion scavenger; 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a nitric oxide scavenger; 5,10,15,20- tetrakis-[4-sulfonatophenyl]-porphyrinato-iron[III], a peroxynitrite (ONOO(-)) decomposition catalyst; urate, an ONOO(-) scavenger; 3-aminobenzamide, a PARP inhibitor; or N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide HCl, a chemically dissimilar and more potent PARP inhibitor. The decrease in O(2) uptake induced by cytomix was associated with decreased cellular levels of NAD(+)/NADH. The decrease in cellular NAD(+)/NADH content and the decrease in O(2) uptake induced by cytomix were completely abrogated if liposome-encapsulated NAD(+) was added to the cultures during immunostimulation. Empty liposomes also increased O(2) uptake by immunostimulated Caco-2 cells, but much less effectively than liposomes containing NAD(+). These data are consistent with the view that enterocytes exposed to proinflammatory cytokines consume less O(2) due to NAD(+)/NADH depletion secondary to activation of PARP by ONOO(-) or other oxidants.  相似文献   

4.
Poly(ADP-ribose) polymerase (PARP) inhibitors have neuroprotective effects after retinal ischemia and reperfusion (I/R) injury, but mechanisms of this action are not clear. A second generation PARP inhibitor, GPI 15427, was administrated to mice to investigate the possible mechanisms underlying its neuroprotective effects after retinal I/R injury. Ischemia was induced by increasing intraocular pressure to 80-90 mm Hg for 60 min followed by reperfusion, and mice were treated with GPI 15427 (40 mg/kg(-1) day(-1), orally) 2 days before or 1 day after injury. Histopathology caused by the retinal I/R injury was estimated by TUNEL assay and histological analyses. Relative gene expressions were evaluated by RT-PCR, Western blotting and immunohistological studies. GPI 15427 inhibited the retinal I/R-induced PARP activation and glial cell activation. GPI 15427 also significantly inhibited the I/R-induced neurodegeneration, as well as increase in TUNEL-positive cells. I/R-induced PERK-eIF2α-CHOP activation and Bip over-expression were inhibited by GPI 15427, while it did not suppress I/R-induced CHOP over-expression and degeneration of retinal capillaries. Our results suggest that GPI 15427 inhibited retinal I/R-induced neurodegeneration and glial cell activation, and this was associated with an effect of the drug to suppress PERK-eIF2α-CHOP activation and Bip over-expression. These results provide evidence that GPI 15427 inhibits retinal I/R injury at least in part via inhibition of endoplasmic reticulum stress.  相似文献   

5.
We investigated the effect of 3-aminobenzamide (3-AB), an inhibitor of the nuclear enzyme poly(ADP-ribose) polymerase (PARP), against early ischemia/reperfusion (IR) injury in heart transplantation. In our experimental model, rat heart subjected to heterotopic transplantation, low temperature global ischemia (2 h) was followed by an in vivo reperfusion (60 min). In these conditions, and in the absence of 3-AB treatment, clear signs of oxidative stress, such as lipid peroxidation, increase in protein carbonyls and DNA strand breaks, were evident; PARP was markedly activated in concomitance with a significant NAD + and ATP depletion. The results of microscopic observations (nuclear clearings, plasma membrane discontinuity), and the observed rise in the serum levels of heart damage markers, suggested the development of necrotic processes while, conversely, no typical sign of apoptosis was evident. Compared to the effects observed in untreated IR heart, the administration of 3-AB (10 mg/kg to the donor and to the recipient animal), but not that of its inactive analogue 3-aminobenzoic acid, significantly modified the above parameters: the levels of oxidative stress markers were significantly reduced; PARP activation was markedly inhibited and this matched a significant rise in NAD + and ATP levels. PARP inhibition also caused a reduced release of the cardiospecific damage markers and attenuated morphological cardiomyocyte alterations, save that, in this condition, we noted the appearance of typical apoptotic markers: activation of caspase-3, oligonucleosomal DNA fragmentation, ISEL positive nuclei. Possible mechanisms for these effects are discussed, in any case the present results indicate that PARP inhibition has an overall beneficial effect against myocardial reperfusion injury, mainly due to prevention of energy depletion. In this context, the signs of apoptosis observed under 3-AB treatment might be ascribed to the maintenance of sufficient intracellular energy levels. These latter allow irreversible damages triggered during the ischemic phase to proceed towards apoptosis instead of towards necrosis, as it appears to happen when the energetic pools are depleted by high PARP activity.  相似文献   

6.
We investigated the effect of 3-aminobenzamide (3-AB), an inhibitor of the nuclear enzyme poly(ADP-ribose) polymerase (PARP), against early ischemia/reperfusion (IR) injury in heart transplantation. In our experimental model, rat heart subjected to heterotopic transplantation, low temperature global ischemia (2 h) was followed by an in vivo reperfusion (60 min). In these conditions, and in the absence of 3-AB treatment, clear signs of oxidative stress, such as lipid peroxidation, increase in protein carbonyls and DNA strand breaks, were evident; PARP was markedly activated in concomitance with a significant NAD + and ATP depletion. The results of microscopic observations (nuclear clearings, plasma membrane discontinuity), and the observed rise in the serum levels of heart damage markers, suggested the development of necrotic processes while, conversely, no typical sign of apoptosis was evident. Compared to the effects observed in untreated IR heart, the administration of 3-AB (10 mg/kg to the donor and to the recipient animal), but not that of its inactive analogue 3-aminobenzoic acid, significantly modified the above parameters: the levels of oxidative stress markers were significantly reduced; PARP activation was markedly inhibited and this matched a significant rise in NAD + and ATP levels. PARP inhibition also caused a reduced release of the cardiospecific damage markers and attenuated morphological cardiomyocyte alterations, save that, in this condition, we noted the appearance of typical apoptotic markers: activation of caspase-3, oligonucleosomal DNA fragmentation, ISEL positive nuclei. Possible mechanisms for these effects are discussed, in any case the present results indicate that PARP inhibition has an overall beneficial effect against myocardial reperfusion injury, mainly due to prevention of energy depletion. In this context, the signs of apoptosis observed under 3-AB treatment might be ascribed to the maintenance of sufficient intracellular energy levels. These latter allow irreversible damages triggered during the ischemic phase to proceed towards apoptosis instead of towards necrosis, as it appears to happen when the energetic pools are depleted by high PARP activity.  相似文献   

7.
BACKGROUND: PolyADPribose polymerase (PARP) is activated by DNA strand breaks to catalyze the addition of ADPribose groups to nuclear proteins, especially PARP-1. Excessive polyADPribosylation leads to cell death through depletion of NAD+ and ATP. MATERIALS AND METHODS: In vivo PARP activation in heart tissue slices was assayed through conversion of [33P]NAD+ into polyADPribose (PAR) following ischemia-reperfusion (I/R) and also monitored by immunohistochemical staining for PAR. Cardiac contractility, nitric oxide (NO), reactive oxygen species (ROS), NAD+ and ATP levels were examined in wild type (WT) and in PARP-1 gene-deleted (PARP-1(-/-)) isolated, perfused mouse hearts. Myocardial infarct size was assessed following coronary artery occlusion in rats treated with PARP inhibitors. RESULTS: Ischemia-reperfusion (I/R) augmented formation of nitric oxide, oxygen free radicals and PARP activity. I/R induced decreases in cardiac contractility and NAD+ levels were attenuated in PARP-1(-/-) mouse hearts. PARP inhibitors reduced myocardial infarct size in rats. Residual polyADPribosylation in PARP-1(-/-) hearts may reflect alternative forms of PARP. CONCLUSIONS: PolyADPribosylation from PARP-1 and other sources of enzymatic PAR synthesis is associated with cardiac damage following myocardial ischemia. PARP inhibitors may have therapeutic utility in myocardial disease.  相似文献   

8.
Abstract: The reaction of superoxide and nitric oxide results in the formation of peroxynitrite, a long lived and highly reactive oxidant species. It has been suggested that the formation of peroxynitrite in vivo may contribute to cell death in some neurological conditions. We have examined the effect of peroxynitrite on cell death in the NSC34 spinal cord cell line. A brief (30 min) exposure to either peroxynitrite or hydrogen peroxide caused delayed cell death with an EC50 for both of ∼1 m M . Cell death was prevented by the RNA synthesis inhibitor actinomycin D and included DNA damage as an early event. We sought to clarify the potential role of the DNA binding enzyme poly(ADP-ribose) polymerase (PARP) in cell death in these cells. Several PARP inhibitors [benzamide, 3-aminobenzamide, nicotinamide, and 6(5 H )-phenanthridinone] prevented cell death, but the inactive analogue benzoic acid did not. However, there was no evidence of cleavage of PARP, which occurs in apoptosis via the activation of the caspase CPP32. Therefore, we suggest that PARP contributes to neuronal injury as an early event, probably by lethal NAD depletion, without any requirement for proteolytic cleavage.  相似文献   

9.
M C Field  A K Menon    G A Cross 《The EMBO journal》1991,10(10):2731-2739
Cells of the insect (procyclic) stage of the life cycle of the African trypanosome, Trypanosoma brucei, express an abundant stage-specific glycosylated phosphatidylinositol (GPI) anchored glycoprotein, the procyclic acidic repetitive protein (PARP). The anchor is insensitive to the action of bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), suggesting that it contains an acyl-inositol. We have recently described the structure of a PI-PLC resistant glycosylphosphatidylinositol, PP1, which is specific to the procyclic stage, and have presented preliminary evidence that the phosphatidylinositol portion of the protein-linked GPI on PARP has a similar structure. In this paper we show, by metabolic labelling with [3H]fatty acids, that the PARP anchor contains palmitate esterified to inositol, and stearate at sn-1, in a monoacylglycerol moiety, a structure identical to PP1. Using pulse-chase labelling, we show that both fatty acids are incorporated into the GPI anchor from a large pool of metabolic precursors, rather than directly from acyl-CoA. We also demonstrate that the addition of the GPI anchor moiety to PARP is dependent on de novo protein synthesis, excluding the possibility that incorporation of fatty acids into PARP can occur by a remodelling of pre-existing GPI anchors. Finally we show that the phosphatidylinositol (PI) species that are utilized for GPI biosynthesis are a subpopulation of the cellular PI molecular species. We propose that these observations may be of general validity since several other eukaryotic membrane proteins (e.g. human erythrocyte acetylcholine esterase and decay accelerating factor) have been reported to contain palmitoylated inositol residues.  相似文献   

10.
Accelerated glucose metabolism leads to oxidative stress and DNA damage in cells; these effects are related to glucose toxicity. The precise mechanisms of glucose toxicity are still unclear. The aim of this work was to investigate the mechanism of poly(ADP‐ribose) polymerase 1 (PARP1), which is a DNA repair enzyme activated by high‐glucose‐induced oxidative stress, and its effect on glucose toxicity in HepG2 hepatocytes. HepG2 cells were cultured under normal (5.5 mM) or high (30 mM) glucose conditions for 4 days. PJ34, which is an inhibitor of PARP1, was used to determine the downstream effects of PARP1 activation. PARP1 activity in 30 mM‐glucose‐treated cells was more than that in 5.5 mM‐glucose‐treated cells, and the activity correlated with the increase in ROS generation and DNA damage. PJ34 suppressed PARP1 activation and prevented the high‐glucose‐induced suppression of SIRT1 and AMP‐activated protein kinase (AMPK) activity, which was similar to its effect on the restoration of intracellular nicotinamide adenine dinucleotide (NAD) content. Further, the phosphorylation of insulin receptor was attenuated in response to insulin stimulation under high glucose conditions, and PJ34 could reverse this effect. The results of transfection of HepG2 cells with PARP1 small interfering RNA were similar to those obtained by treatment of the cells with PARP1 inhibitor PJ34. These data suggest that high‐glucose‐induced PARP1 activation might play a role in glucose toxicity by down‐regulating SIRT1 and AMPK activity through NAD depletion and resulting in insulin insensitivity. J. Cell. Biochem. 112: 299–306, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
U937 human myeloid leukemia cells respond to mild treatment with hydrogen peroxide and hyperthermia by undergoing apoptosis, an active mode of cell suicide. Higher concentrations of hydrogen peroxide, or longer incubation at the hyperthermic temperature, change the mode of cell death from apoptosis to the passive necrosis. Stress treatments cause a severe drop in the intracellular NAD concentration. 3-Aminobenzamide (3-ABA), a specific inhibitor of poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme which is activated by breaks in DNA to catabolize intracellular NAD, is capable of relieving such a drop. This suggests that breaks in DNA have been induced by both oxidative stress and heat shock, thereby activating PARP. Upon stress, NAD concentration has a first initial sharp drop; then, for mild stress treatments, it recovers, just when apoptosis begins to be detectable (8 h of recovery). At 20 h, when the apoptotic ladder-like pattern of DNA is visible, NAD concentration has dropped again, probably because of a second PARP activation due to the extensive DNA degradation that accompanies apoptosis. The presence of 3-ABA, concomitantly with the preservation of the intracellular NAD content, reduces the extent of apoptosis upon oxidative stress and strongly enhances cell survival, thus suggesting a role for PARP in triggering stress-induced apoptosis. All apoptotic U937 cells have a reduced NAD content, independently of the inducing agent; however, upon treatments which do not cause immediate DNA breaks, the drop in NAD concentration occurs only after the apoptotic ladder is detectable and can be ascribed to the activation of PARP by the free ends of DNA formed during the endonucleolitic degradation. Moreover, in these instances the inhibition of PARP, although effective in blocking the drop in NAD concentration, has no effect on apoptosis, thus being only circumstantial.  相似文献   

12.
Activation of poly(ADP-ribose) polymerase (PARP) by DNA breaks catalyzes poly(ADP-ribosyl)ation and results in depletion of NAD+ and ATP, which is thought to induce necrosis. Proteolytic cleavage of PARP by caspases is a hallmark of apoptosis. To investigate whether PARP cleavage plays a role in apoptosis and in the decision of cells to undergo apoptosis or necrosis, we introduced a point mutation into the cleavage site (DEVD) of PARP that renders the protein resistant to caspase cleavage in vitro and in vivo. Here, we show that after treatment with tumor necrosis factor alpha, fibroblasts expressing this caspase-resistant PARP exhibited an accelerated cell death. This enhanced cell death is attributable to the induction of necrosis and an increased apoptosis and was coupled with depletion of NAD+ and ATP that occurred only in cells expressing caspase-resistant PARP. The PARP inhibitor 3-aminobenzamide prevented the NAD+ drop and concomitantly inhibited necrosis and the elevated apoptosis. These data indicate that this accelerated cell death is due to NAD+ depletion, a mechanism known to kill various cell types, caused by activation of uncleaved PARP after DNA fragmentation. The present study demonstrates that PARP cleavage prevents induction of necrosis during apoptosis and ensures appropriate execution of caspase-mediated programmed cell death.  相似文献   

13.
In order to clarify the role of the 1-substituent of quinazoline derivatives in their inhibitory activity against poly(ADP-ribose) polymerase (PARP), two novel inhibitors, 1 [8-hydroxy-1-(3-morpholinopropyl)-quinazoline-2,4(1H,3H)-dione] and 2 [8-hydroxy-1-(3-phenoxypropyl)-quinazoline-2,4(1H,3H)-dione], were synthesized and subjected to X-ray crystal analysis in complex with the PARP C-terminal catalytic domain (PARP-CD), which requires NAD+ coenzyme for biological function. The nicotinamide-mimicking part of the quinazoline skeleton of 1 and 2 were both located at the nicotinamide subsite of the NAD+-binding pocket in the same manner as previously reported inhibitors: three hydrogen bonds [(Gly-863)NH-O12, (Gly-863)O-HN3 and (Ser-904)O(gamma)-O12] and stacking interaction between the Tyr-907 phenol and the quinazoline ring. On the other hand, the N-morpholinoprop-3-yl moiety introduced at the 1-position of the quinazoline ring in 1 bridged the large gap between the donor site and the acceptor site through a (Met-890)NH-O20(morpholine) hydrogen bond, where the donor and the acceptor sites are classified as the binding sites of NAD+ and the ADP moiety of the poly(ADP-ribose) chain, respectively. In contrast, the N-phenoxyprop-3-yl moiety in 2 formed hydrophobic interactions close to the adenosine-binding site of NAD+, unlike the hydrogen bond such as in 1. As the inhibitory activities of 1 and 2 for PARP were much more potent than those of the unsubstituted nicotinamide analogues, these results suggest that the occupation of the proximal region of the ADP phosphate-and adenosine-binding subsite of the donor site or that of the gap between the donor and the acceptor site by the 1-substituent of quinazoline may increase the inhibitory activity considerably. The nearly equal inhibitory activities of 1 and 2, despite of their different binding modes at the active site, indicate that this 1-substituent is promising in improving the bioavailability of the inhibitor without compromising its inhibitory activity.  相似文献   

14.
15.
Poly(ADP-ribose) polymerase-1 (PARP), a chromatin-bound enzyme, is activated by cell oxidative stress. Because oxidative stress is also considered a main component of angiotensin II-mediated cell signaling, it was postulated that PARP could be a downstream target of angiotensin II-induced signaling leading to cardiac hypertrophy. To determine a role of PARP in angiotensin II-induced hypertrophy, we infused angiotensin II into wild-type (PARP(+/+)) and PARP-deficient mice. Angiotensin II infusion significantly increased heart weight-to-tibia length ratio, myocyte cross-sectional area, and interstitial fibrosis in PARP(+/+) but not in PARP(-/-) mice. To confirm these results, we analyzed the effect of angiotensin II in primary cultures of cardiomyocytes. When compared with PARP(-/-) cardiomyocytes, angiotensin II (1 microM) treatment significantly increased protein synthesis in PARP(+/+) myocytes, as measured by (3)H-leucine incorporation into total cell protein. Angiotensin II-mediated hypertrophy of myocytes was accompanied with increased poly-ADP-ribosylation of nuclear proteins and depletion of cellular NAD content. When cells were treated with cell death-inducing doses of angiotensin II (10-20 microM), robust myocyte cell death was observed in PARP(+/+) but not in PARP(-/-) myocytes. This type of cell death was blocked by repletion of cellular NAD levels as well as by activation of the longevity factor Sir2alpha deacetylase, indicating that PARP induction and subsequent depletion of NAD levels are the sequence of events causing angiotensin II-mediated cardiomyocyte cell death. In conclusion, these results demonstrate that PARP is a nuclear integrator of angiotensin II-mediated cell signaling contributing to cardiac hypertrophy and suggest that this could be a novel therapeutic target for the management of heart failure.  相似文献   

16.
Kaundal RK  Shah KK  Sharma SS 《Life sciences》2006,79(24):2293-2302
Oxidative stress induced cell injury is reported to contribute to the pathogenesis of cerebral ischemia. Reactive oxygen species such as hydrogen peroxide (H2O2) and superoxide radical along with nitric oxide and peroxynitrite generated during ischemia-reperfusion injury, causes the overactivation of poly (ADP-ribose) polymerase (PARP) leading to neuronal cell death. In the present study we have evaluated the effects of PARP inhibitor, 8-hydroxy-2 methyl-quinazolin-4-[3H]one (NU1025) in H2O2 and 3-morphilinosyndonimine (SIN-1) induced cytotoxicity in PC12 cells as well as in middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. Exposure of PC12 cells to H2O2 (0.4 mM) and SIN-1 (0.8 mM) resulted in a significant decrease in cell viability after 6 h. Pretreatment with NU1025 (0.2 mM) restored cell viability to approximately 73 and 82% in H2O2 and SIN-1 injured cells, respectively. In MCAO studies, NU1025 was administered at different time points (1 h before reperfusion, immediately before reperfusion, 3 h after reperfusion and 6 h after reperfusion). NU1025 at 1 and 3 mg/kg reduced total infarct volume to 25% and 45%, respectively, when administered 1 h before reperfusion. NU1025 also produced significant improvement in neurological deficits. Neuroprotection with NU1025 was associated with reduction in PAR accumulation, reversal of brain NAD depletion and reduction in DNA fragmentation. Results of this study demonstrate the neuroprotective activity of NU1025 and suggest its potential in cerebral ischemia.  相似文献   

17.
Poly(ADP-ribose) polymerase (PARP) is an abundant nuclear protein in most of the eukaryotic tissues. When activated by DNA damage, PARP synthesizes poly(ADP-ribose) from NAD. Conventional radioactive PARP enzyme assay requires the separation of the polymer product from the NAD substrate, a rate-limiting step that hampers large-scale chemical library screening to identify novel small-molecule PARP inhibitors. By using biotinylated NAD, we have developed a scintillation proximity assay (SPA) for PARP. We demonstrated that PARP can incorporate the biotinylated ADP-ribose units into the radioactive poly(ADP-ribose) polymer, which can directly bind and excite the streptavidin-conjugated scintillation beads. PARP-SPA can be readily adapted to a 96-well format for automatic high-throughput screening for PARP inhibitors.  相似文献   

18.
19.
20.
An excessive activation of poly(ADP-ribose) polymerase (PARP) has been proposed to play a key role in post-ischemic neuronal death. We examined the neuroprotective effects of the PARP inhibitors benzamide, 6(5H)-phenanthridinone, and 3,4-dihydro-5-[4-1(1-piperidinyl)buthoxy]-1(2H)-isoquinolinone in three rodent models of cerebral ischemia. Increasing concentrations of the three PARP inhibitors attenuated neuronal injury induced by 60 min oxygen-glucose deprivation (OGD) in mixed cortical cell cultures, but were unable to reduce CA1 pyramidal cell loss in organotypic hippocampal slices exposed to 30 min OGD or in gerbils following 5 min bilateral carotid occlusion. We then examined the necrotic and apoptotic features of OGD-induced neurodegeneration in cortical cells and hippocampal slices using biochemical and morphological approaches. Cortical cells exposed to OGD released lactate dehydrogenase into the medium and displayed ultrastructural features of necrotic cell death, whereas no caspase-3 activation nor morphological characteristics of apoptosis were observed at any time point after OGD. In contrast, a marked increase in caspase-3 activity was observed in organotypic hippocampal slices after OGD, together with fluorescence and electron microscope evidence of apoptotic neuronal death in the CA1 subregion. Moreover, the caspase inhibitor Z-VAD-FMK reduced OGD-induced CA1 pyramidal cell loss. These findings suggest that PARP overactivation may be an important mechanism leading to post-ischemic neurodegeneration of the necrotic but not of the apoptotic type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号