首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation alters calcium sensitivity, and decreases maximum isometric force (Po) and shortening velocity (Vmax) of single muscle fibres. To examine the effect of oxidation on the curvature of the force-velocity relationship, which determines muscle power in addition to Po and Vmax, skinned rat type I fibres were maximally activated at 15°C in a solution with pCa 4.5 and subjected to isotonic contractions before and after 4-min incubation in 50 mM H?O? (n=10) or normal relaxing solution (n=3). In five oxidised and four control fibres the rate of force redevelopment (ktr), following a rapid release and re-stretch, was measured. This gives a measure of the sum of the rate constants for cross-bridge attachment (f) and detachment (g?): (f+g?). H?O? reduced Po, Vmax and ktr by 19%, 21% and 24% respectively (P<0.001), while the shape of the force-velocity relationship was unchanged. Fitting data to the Huxley cross-bridge model suggested that oxidation decreased both the rate constant for cross-bridge attachment (f), and detachment of negatively strained cross-bridges (g?), similar to the effect of reduced activation. This suggests that oxidative modification is a possible cause of the variation in contractile properties between muscle fibres of the same type.  相似文献   

2.
The maximal shortening velocity of a muscle (V(max)) provides a link between its macroscopic properties and the underlying biochemical reactions and is altered in some diseases. Two methods that are widely used for determining V(max) are afterloaded and isotonic release contractions. To determine whether these two methods give equivalent results, we calculated V(max) in 9 intact single fibres from the lumbrical muscles of the frog Xenopus laevis (9.5-15.5 °C, stimulation frequency 35-70 Hz). The data were modelled using a 3-state cross-bridge model in which the states were inactive, detached, and attached. Afterloaded contractions gave lower predictions of Vmax than did isotonic release contractions in all 9 fibres (3.20 ± 0.84 versus 4.11 ± 1.08 lengths per second, respectively; means ± SD, p = 0.001) and underestimated unloaded shortening velocity measured with the slack test by an average of 29% (p = 0.001, n = 6). Excellent model predictions could be obtained by assuming that activation is inhibited by shortening. We conclude that under the experimental conditions used in this study, afterloaded and isotonic release contractions do not give equivalent results. When a change in the V(max) measured with afterloaded contractions is observed in diseased muscle, it is important to consider that this may reflect differences in either activation kinetics or cross-bridge cycling rates.  相似文献   

3.
The goals of this study were to investigate adductor pollicis muscle (n = 7) force depression after maximal electrically stimulated and voluntarily activated isovelocity (19 and 306 degrees /s) shortening contractions and the effects of fatigue. After shortening contractions, redeveloped isometric force was significantly (P < 0.05) depressed relative to isometric force obtained without preceding shortening. For voluntarily and electrically stimulated contractions, relative force deficits respectively were (means +/- SE) 25.0 +/- 3.5 and 26.6 +/- 1.9% (19 degrees /s), 7.8 +/- 2.2 and 11.5 +/- 0.6% (306 degrees /s), and 23.9 +/- 4.4 and 31.6 +/- 4.7% (19 degrees /s fatigued). The relative force deficit was significantly smaller after fast compared with slow shortening contractions, whereas activation manner and fatigue did not significantly affect the deficit. It was concluded that in unfatigued and fatigued muscle the velocity-dependent relative force deficit was similar with maximal voluntary activation and electrical stimulation. These findings have important implications for experimental studies of force-velocity relationships. Moreover, if not accounted for in muscle models, they will contribute to differences observed between the predicted and the actually measured performance during in vivo locomotion.  相似文献   

4.
We have studied the inhibition of the contraction of glycerinated rabbit psoas muscle caused by ligands that bind to the ATPase site of myosin. Two ligands, adenosine 5' (beta, gamma-imido) triphosphate (AMPPNP) and pyrophosphate (PPi), decreased the force and stiffness developed in isometric contractions and the velocity of shortening of isotonic contractions. The force exerted by isometric fibers was measured as a function of MgATP in the presence and absence of a constant concentration of the ligands. As the MgATP concentration decreased, the inhibition of tension caused by the ligand increased, reaching approximately 50% at 25 microM MgATP and either 2 mM MgPPi or 2 mM MgAMPPNP. The maximum velocity of shortening was also measured as a function of MgATP concentration in the presence of 1 and 2 mM MgPPi and 2.5 and 5 mM MgAMPPNP. Both ligands acted as pure competitive inhibitors with Ki = 3.0 mM for PPi and 5.1 mM for MgAMPPNP. These data show that both ligands are weak inhibitors of the contraction of fibers. The results provided information on the energetics of actin-myosin-ligand states that occur in the portion of the cross-bridge cycle where MgATP binds to myosin. A simple analysis of the inhibition of velocity suggests that MgAMPPNP binds to the actomyosin complex at this step of the cycle with an effective affinity constant of approximately 2 X 10(2) M-1.  相似文献   

5.
The suppression of tension development by orthovanadate (Vi) was studied in mechanical experiments and by measuring the binding of radioactive Vi and nucleotides to glycerol-extracted rabbit muscle fibers. During active contractions, Vi bound to the cross-bridges and suppressed tension with an apparent second-order rate constant of 1.34 X 10(3) M-1s-1. The half-saturation concentration for tension suppression was 94 microM Vi. The incubation of fibers in Vi relaxing or rigor solutions prior to initiation of active contractions had little effect on the initial rise of active tension. The addition of adenosine diphosphate (ADP) and Vi to fibers in rigor did not cause relaxation. Suppression of tension only developed during cross-bridge cycling. After slow relaxation from rigor in 1 mM Vi and low (50 microM) MgATP concentration (0 Ca2+), radioactive Vi and ADP were trapped within the fiber. This finding indicated the formation of a stable myosin X ADP X Vi complex, as has been reported in biochemical experiments with isolated myosin. Vi and ADP trapped within the fibers were released only by subsequent cross-bridge attachment. Vi and ADP were preferentially trapped under conditions of cross-bridge cycling in the presence of ATP rather than in relaxed fibers or in rigor with ADP. These results indicate that in the normal cross-bridge cycle, inorganic phosphate (Pi) is released from actomyosin before ADP. The resulting actomyosin X ADP intermediate can bind Vi and Pi. This intermediate probably supports force. Vi behaves as a close analogue of Pi in muscle fibers, as it does with isolated actomyosin.  相似文献   

6.
This study utilized N-benzyl-p-toluene sulfonamide (BTS), a potent inhibitor of cross-bridge cycling, to measure 1) the relative metabolic costs of cross-bridge cycling and activation energy during contraction, and 2) oxygen uptake kinetics in the presence and absence of myosin ATPase activity, in isolated Xenopus laevis muscle fibers. Isometric tension development and either cytosolic Ca2+ concentration ([Ca2+]c) or intracellular Po2 (PiO2) were measured during contractions at 20 degrees C in control conditions (Con) and after exposure to 12.5 microM BTS. BTS attenuated tension development to 5+/-0.4% of Con but did not affect either resting or peak [Ca2+]c during repeated isometric contractions. To determine the relative metabolic cost of cross-bridge cycling, we measured the fall in PiO2) (DeltaPiO2; a proxy for Vo2) during contractions in Con and BTS groups. BTS attenuated DeltaP(iO2) by 55+/-6%, reflecting the relative ATP cost of cross-bridge cycling. Thus, extrapolating DeltaPiO2 to a value that would occur at 0% tension suggests that actomyosin ATP requirement is approximately 58% of overall ATP consumption during isometric contractions in mixed fiber types. BTS also slowed the fall in PiO2) (time to 63% of overall DeltaPiO2) from 75+/-9 s (Con) to 101+/-9 s (BTS) (P<0.05), suggesting an important role of the products of ATP hydrolysis in determining the Vo2 onset kinetics. These results demonstrate in isolated skeletal muscle fibers that 1) activation energy accounts for a substantial proportion (approximately 42%) of total ATP cost during isometric contractions, and 2) despite unchanged [Ca2+]c transients, a reduced rate of ATP consumption results in slower Vo2 onset kinetics.  相似文献   

7.
Effects of the non-hydrolyzable nucleotide analogue magnesium pyrophosphate (MgPPi) on cross-bridge properties were investigated in skinned smooth muscle of the guinea pig Taenia coli. A "high" rigor state was obtained by removing MgATP at the plateau of an active contraction. Rigor force decayed slowly towards an apparent plateau of approximately 25-35% of maximal active force. MgPPi markedly increased the rate of force decay. The initial rate of the force decay depended on [MgPPi] and could be described by the Michaelis-Menten equation with a dissociation constant of 1.6 mM. The decay was irreversible amounting to approximately 50% of the rigor force. Stiffness decreased by 20%, suggesting that the major part of the cross-bridges were still attached. The results can be interpreted as "slippage" of PPi-cross-bridges to positions of lower strain. The initial rate of MgPPi-induced force decay decreased with decreasing ionic strength in the range 45-150 mM and was approximately 25% lower in thiophosphorylated fibers. MgADP inhibited the MgPPi-induced force decay with an apparent Ki of 2 microM. The apparent Km of MgATP for the maximal shortening velocity in thiophosphorylated fibers was 32 microM. This low Km of MgATP suggests that steps other than MgATP-induced detachment are responsible for the low shortening velocity in smooth muscle. No effects were observed of 4 mM MgPPi on the force-velocity relation, suggesting that cross-bridges with bound MgPPi do not constitute an internal load or that binding of MgPPi is weaker in negatively strained cross-bridges during shortening.  相似文献   

8.
Edman has reported that the force-velocity relationship (FVR) departs from Hill's classic hyperbola near 0.80 of measured isometric force (J Physiol 404: 301-321, 1988). The purpose of this study was to investigate the biphasic nature of the FVR in the rested state and after some recovery from fatigue in the rat medial gastrocnemius muscle in situ. Force-velocity characteristics were determined before and during recovery from fatigue induced by intermittent stimulation at 170 Hz for 100 ms each second for 6 min. Force-velocity data were obtained for isotonic contractions with 100 ms of 200-Hz stimulation, including several measurements with loads above 0.80 of measured isometric force. The force-velocity data obtained in this study were fit well by a double-hyperbolic equation. A departure from Hill's classic hyperbola was found at 0.88+/-0.01 of measured isometric force, which is higher than the approximately 0.80 reported by Edman et al. for isolated frog fibers. After 45 min of recovery, maximum shortening velocity was 86+/-2% of prefatigue, but neither curvature nor predicted isometric force was significantly different from prefatigue. The location of the departure from Hill's classic hyperbola was not different after this recovery from the fatiguing contractions. Including an isometric point in the data set will not yield the same values for maximal velocity and the degree of curvature as would be obtained using the double hyperbola approach. Data up to 0.88 of measured isometric force can be used to fit data to the Hill equation.  相似文献   

9.
The steady-state isometric force following active muscle shortening is smaller than the corresponding force obtained for purely isometric contractions. This so-called residual force depression has been observed consistently for more than half a century, however its mechanism remains a matter of scientific debate. [Maréchal, G., Plaghki, L., 1979. The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity. J. Gen. Physiol. 73, 453–467] suggested that force depression might be caused by alterations in the cross-bridge kinetics following muscle shortening, but there is no research studying force depression systematically for altered cross-bridge kinetic conditions. The purpose of this study was to investigate if force depression affects so-called weakly and strongly bound cross-bridges to the same degree. In order to achieve this aim, we modified the ratio of weakly to strongly bound cross-bridges with 2,3-butanedione monoxime (BDM) in single frog fibers. BDM inhibits the formation of strongly bound cross-bridges in a dose-dependent manner, thus the ratio of weakly to strongly bound cross-bridges could be altered in a systematic way. We found that the absolute amount of force depression was decreased by 50% while the relative amount was decreased by 12% in BDM exposed fibers compared to fibers in normal Ringer's solution. Furthermore, force depression was accompanied by a decrease in stiffness that was much greater in normal compared to BDM exposed fibers, leading to the conclusion that force depression was caused by an inhibition of cross-bridge attachment following fiber shortening and that this inhibition primarily affected cross-bridges in the strongly bound states.  相似文献   

10.
Effects of intracellular ionic strength on the isotonic contraction properties of both intact fibers and skinned fibers give insights into the cross-bridge mechanism, but presently there is fundamental disagreement in the results on the two fiber preparations. This paper, which studies the effects on contraction of varying the osmotic pressure of the bathing medium with impermeant and permeant solutes, explains the above controversy and establishes the physiological significance of the previous results on skinned fibers. Fast-twitch fibers, isolated singly from tibialis and semitendinosus muscles of frogs, were activated by a temperature-jump technique in hyperosmotic solutions with either 100 or 150 mM sucrose (impermeant), or 50 or 75 mM KCl (permeant). Intracellular ionic strength was expected to rise in these solutions from the standard value of approximately 190 to 265 mM. Cell volume and the speed of unloaded shortening both decreased with sucrose and were constant with KCl. On the other hand, isometric force decreased equally with equiosmolar addition of either solute; this is additional evidence that contractile force decreases with ionic strength and is independent of fiber volume. Therefore, for the main cross-bridges, force per bridge is constant with changes in the lateral separation between the myofilaments. The next finding, that at a fixed cell volume the contraction speed is constant with KCl, provides clear evidence in intact fibers that the intrinsic speed of shortening is insensitive to increased ionic strength. The data with KCl are in agreement with the results on skinned fibers. The results suggest that in the cross-bridge kinetics in vivo the rate-limiting step is different for force than that for shortening. On the other hand, the decrease in speed with sucrose is associated with the shrinkage in cell volume, and is explained by the possibility of an increased internal load. A major fraction of the internal load may arise from unusual interactions between the sliding filaments; these interactions are enhanced in the fibers compressed with sucrose, but this does not affect the intrinsic kinetics of the main cross-bridges.  相似文献   

11.
This study addresses a long-standing controversy on the effects of the degree of activation on cross-bridge kinetics in vivo, by utilizing isolated intact and skinned fiber preparations. Steady force levels ranging from 0.1 to 0.76 P0 were achieved at 0 degrees C with temperature-step stimulation of intact fibers by varying the amount of caffeine in the bathing medium. The speed of unloaded shortening (by slack test) was found to be practically constant, which suggests that intracellular Ca2+ in the intact preparation has relatively little effect on isotonic shortening. Along with the results on tetanically stimulated fibers (force, P0), we observed a minor but significant trend for the speed to decline with lowered force levels. This trend is explained by the presence of a constant internal load equaling approximately 1% P0. The effect of Ca2+ on the shortening behavior of skinned fibers was examined at 0 and 10 degrees C. At 0 degrees C, there was practically no effect of Ca2+ on the shortening response in slack tests. At 10 degrees C, there was also no Ca2+ effect during the first activation cycle, but in subsequent cycles the speed of shortening was reduced during partial activation, which indicates that there were permanent changes in the fiber properties under these experimental conditions. The latter result could be explained if the internal load had increased to approximately 5% P0 in the modified skinned fiber (compared with 1% P0 in intact fiber). These findings show that isotonic contraction of frog fibers is intrinsically unaffected by the variations in intracellular Ca2+ that modulated the force over a nearly complete range. The results provide support for the idea that Ca2+ influences the force development in vivo by on-off switching mechanisms.  相似文献   

12.
The force development by calcium-activated skinned frog skeletal muscle fibers and the motion on a slow time base after a quick decrease in load were studied at 0-1 degrees C as a function of the ionic strength and the degree of activation. The ionic strength was varied between 50 and 190 mM by adding appropriate concentrations of KCl to the bathing solution. Under these conditions, the fibers could be maximally activated for several cycles at low ionic strength without developing residual tension. We found that the steady isometric force in fully activated fibers linearly decreased when the KCl concentration was increased from 0 to 140 mM. The steady isotonic motion at a given relative load in fully activated fibers was almost the same at KCl concentration greater than or equal to 50 mM. In 0 and 20 mM KCl, the isotonic velocity decreased continuously for more than 300 ms. At a given relative load, the initial velocity of the motion in 0 and 20 mM KCl was about 0.6 and 0.9 times, respectively, that in 140 mM KCl. The initial velocity decreased further when residual tension developed; this observation provides additional evidence that residual tension may reflect the presence of an internal load. The effect of calcium on the motion was examined at 70 mM KCl. In this solution, the motion during the velocity transient at a given relative load appeared to be the same at different levels of activation. The speed of the subsequent motion was almost steady at high calcium levels but decreased continuously in low calcium levels. These results support the idea that at low ionic strength the response of the fiber to calcium is switch-like, but that other factors also affect the contraction mechanism under these conditions.  相似文献   

13.
Force generation in striated muscle is coupled with inorganic phosphate (Pi) release from myosin, because force falls with increasing Pi concentration ([Pi]). However, it is unclear which steps in the cross-bridge cycle limit loaded shortening and power output. We examined the role of Pi in determining force, unloaded and loaded shortening, power output, and rate of force development in rat skinned cardiac myocytes to discern which step in the cross-bridge cycle limits loaded shortening. Myocytes (n = 6) were attached between a force transducer and position motor, and contractile properties were measured over a range of loads during maximal Ca2+ activation. Addition of 5 mM Pi had no effect on maximal unloaded shortening velocity (Vo) (control 1.83 ± 0.75, 5 mM added Pi 1.75 ± 0.58 muscle lengths/s; n = 6). Conversely, addition of 2.5, 5, and 10 mM Pi progressively decreased force but resulted in faster loaded shortening and greater power output (when normalized for the decrease in force) at all loads greater than 10% isometric force. Peak normalized power output increased 16% with 2.5 mM added Pi and further increased to a plateau of 35% with 5 and 10 mM added Pi. Interestingly, the rate constant of force redevelopment (ktr) progressively increased from 0 to 10 mM added Pi, with ktr 360% greater at 10 mM than at 0 mM added Pi. Overall, these results suggest that the Pi release step in the cross-bridge cycle is rate limiting for determining shortening velocity and power output at intermediate and high relative loads in cardiac myocytes. muscle mechanics; force-velocity relationship; cross-bridge cycle  相似文献   

14.
The rate and association constants (kinetic constants) which comprise a seven state cross-bridge scheme were deduced by sinusoidal analysis in chemically skinned rabbit psoas muscle fibers at 20 degrees C, 200 mM ionic strength, and during maximal Ca2+ activation (pCa 4.54-4.82). The kinetic constants were then used to calculate the steady state probability of cross-bridges in each state as the function of MgATP, MgADP, and phosphate (Pi) concentrations. This calculation showed that 72% of available cross-bridges were (strongly) attached during our control activation (5 mM MgATP, 8 mM Pi), which agreed approximately with the stiffness ratio (active:rigor, 69 +/- 3%); active stiffness was measured during the control activation, and rigor stiffness after an induction of the rigor state. By assuming that isometric tension is a linear combination of probabilities of cross-bridges in each state, and by measuring tension as the function of MgATP, MgADP, and Pi concentrations, we deduced the force associated with each cross-bridge state. Data from the osmotic compression of muscle fibers by dextran T500 were used to deduce the force associated with one of the cross-bridge states. Our results show that force is highest in the AM*ADP.Pi state (A = actin, M = myosin). Since the state which leads into the AM*ADP.Pi state is the weakly attached AM.ADP.Pi state, we confirm that the force development occurs on Pi isomerization (AM.ADP.Pi --> AM*ADP.Pi). Our results also show that a minimal force change occurs with the release of Pi or MgADP, and that force declines gradually with ADP isomerization (AM*ADP -->AM.ADP), ATP isomerization (AM+ATP-->AM*ATP), and with cross-bridge detachment. Force of the AM state agreed well with force measured after induction of the rigor state, indicating that the AM state is a close approximation of the rigor state. The stiffness results obtained as functions of MgATP, MgADP, and Pi concentrations were generally consistent with the cross-bridge scheme.  相似文献   

15.
The correlation of acto-myosin ATPase rate with tension redevelopment kinetics (k(tr)) was determined during Ca(+2)-activated contractions of demembranated rabbit psoas muscle fibers; the ATPase rate was either increased or decreased relative to control by substitution of ATP (5.0 mM) with 2-deoxy-ATP (dATP) (5.0 mM) or by lowering [ATP] to 0.5 mM, respectively. The activation dependence of k(tr) and unloaded shortening velocity (Vu) was measured with each substrate. With 5.0 mM ATP, Vu depended linearly on tension (P), whereas k(tr) exhibited a nonlinear dependence on P, being relatively independent of P at submaximum levels and rising steeply at P > 0.6-0.7 of maximum tension (Po). With dATP, Vu was 25% greater than control at Po and was elevated at all P > 0.15Po, whereas Po was unchanged. Furthermore, the Ca(+2) sensitivity of both k(tr) and P increased, such that the dependence of k(tr) on P was not significantly different from control, despite an elevation of Vu and maximal k(tr). In contrast, lowering [ATP] caused a slight (8%) elevation of Po, no change in the Ca(+2) sensitivity of P, and a decrease in Vu at all P. Moreover, k(tr) was decreased relative to control at P > 0.75Po, but was elevated at P < 0.75Po. These data demonstrate that the cross-bridge cycling rate dominates k(tr) at maximum but not submaximum levels of Ca(2+) activation.  相似文献   

16.
Striated muscle is a mechanical system that develops force and generates power in serving vital activities in the body. Striated muscle is a complex biological system; a single mammalian muscle fibre contains up to hundred or even more myofibrils in parallel connected via an inter-myofibril filament network. In one single myofibril thousands of sarcomeres are lined up as a series of linear motors. We recently demonstrated that half-sarcomeres (hS) in a single myofibril operate non-uniformly. We outline a mathematical framework based on cross-bridge kinetics for the simulation of the force response and length change of individual hS in a myofibril. The model describes the muscle myofibril in contraction experiments under various conditions. The myofibril is modeled as a multisegmental mechanical system of hS models, which have active and viscoelastic properties. In the first approach, a two-state cross-bridge formalism relates the hS force to the chemical kinetics of ATP hydrolysis, as first described by Huxley [1957. Muscle structure and theories of contraction. Prog. Biophys. Mol. Biol. 7, 255-318]. Two possible types of biological variability are introduced and modeled. Numerical simulations of a myofibril composed of four to eight hS show a non-uniform hS length distribution and complex internal dynamics upon activation. We demonstrate that the steady-state approximation holds only in restricted time zones during activation. Simulations of myofibril contraction experiments that reproduce the classic steady-state force-length and force-velocity relationships, strictly constrained or “clamped” in either end-held isometric or isotonic contraction conditions, reveal a small but conspicuous effect of hS dynamics on force.  相似文献   

17.
The purpose of this study was to examine the role of myosin heavy chain (MHC) in determining loaded shortening velocities and power output in cardiac myocytes. Cardiac myocytes were obtained from euthyroid rats that expressed alpha-MHC or from thyroidectomized rats that expressed beta-MHC. Skinned myocytes were attached to a force transducer and a position motor, and isotonic shortening velocities were measured at several loads during steady-state maximal Ca(2+) activation (P(pCa4.5)). MHC expression was determined after mechanical measurements using SDS-PAGE. Both alpha-MHC and beta-MHC myocytes generated similar maximal Ca(2+)-activated force, but alpha-MHC myocytes shortened faster at all loads and generated approximately 170% greater peak normalized power output. Additionally, the curvature of force-velocity relationships was less, and therefore the relative load optimal for power output (F(opt)) was greater in alpha-MHC myocytes. F(opt) was 0.31 +/- 0.03 P(pCa4.5) and 0.20 +/- 0.06 P(pCa4.5) for alpha-MHC and beta-MHC myocytes, respectively. These results indicate that MHC expression is a primary determinant of the shape of force-velocity relationships, velocity of loaded shortening, and overall power output-generating capacity of individual cardiac myocytes.  相似文献   

18.
The effects of ADP and phosphate on the contraction of muscle fibers.   总被引:47,自引:11,他引:36       下载免费PDF全文
The products of MgATP hydrolysis bind to the nucleotide site of myosin and thus may be expected to inhibit the contraction of muscle fibers. We measured the effects of phosphate and MgADP on the isometric tensions and isotonic contraction velocities of glycerinated rabbit psoas muscle at 10 degrees C. Addition of phosphate decreased isometric force but did not affect the maximum velocity of shortening. To characterize the effects of ADP on fiber contractions, force-velocity curves were measured for fibers bathed in media containing various concentrations of MgATP (1.5-4 mM) and various concentrations of MgADP (1-4 mM). As the [MgADP]/[MgATP] ratio in the fiber increases, the maximum velocity achieved by the fiber decreases while the isometric tension increases. The inhibition of fiber velocities and the potentiation of fiber tension by MgADP is not altered by the presence of 12 mM phosphate. The concentration of both MgADP and MgATP within the fiber was calculated from the diffusion coefficient for nucleotides within the fiber, and the rate of MgADP production within the fiber. Using the calculated values for the nucleotide concentration inside the fiber, observed values of the maximum contraction velocity could be described, within experimental accuracy, by a model in which MgADP competed with MgATP and inhibited fiber velocity with an effective Ki of 0.2-0.3 mM. The average MgADP level generated by the fiber ATPase activity within the fiber was approximately 0.9 mM. In fatigued fibers MgADP and phosphate levels are known to be elevated, and tension and the maximum velocity of contraction are depressed. The results obtained here suggest that levels of MgADP in fatigued fibers play no role in these decreases in function, but the elevation of both phosphate and H+ is sufficient to account for much of the decrease in tension.  相似文献   

19.
Calcium and ionic strength are both known to modify the force developed by skinned frog muscle fibers. To determine how these parameters affect the cross-bridge contraction mechanism, the isotonic velocity transients following step changes in load were studied in solutions in which calcium concentration and ionic strength were varied. Analysis of the motion showed that calcium has no effect on either the null time or the amplitude of the transients. In contrast, the transient amplitude was increased in high ionic strength and was suppressed in low ionic strength. These results are consistent with the idea that calcium affects force in skeletal muscle by modulating the number of force generators in a simple switchlike "on-off" manner and that the steady force at a given calcium level is proportional to cross-bridge number. On the other hand, the effect of ionic strength on force is associated with changes in the kinetic properties of the cross-bridge mechanism.  相似文献   

20.
Although the structure of the contractile unit in smooth muscle is poorly understood, some of the mechanical properties of the muscle suggest that a sliding-filament mechanism, similar to that in striated muscle, is also operative in smooth muscle. To test the applicability of this mechanism to smooth muscle function, we have constructed a mathematical model based on a hypothetical structure of the smooth muscle contractile unit: a side-polar myosin filament sandwiched by actin filaments, each attached to the equivalent of a Z disk. Model prediction of isotonic shortening as a function of time was compared with data from experiments using ovine tracheal smooth muscle. After equilibration and establishment of in situ length, the muscle was stimulated with ACh (100 μM) until force reached a plateau. The muscle was then allowed to shorten isotonically against various loads. From the experimental records, length-force and force-velocity relationships were obtained. Integration of the hyperbolic force-velocity relationship and the linear length-force relationship yielded an exponential function that approximated the time course of isotonic shortening generated by the modeled sliding-filament mechanism. However, to obtain an accurate fit, it was necessary to incorporate a viscoelastic element in series with the sliding-filament mechanism. The results suggest that a large portion of the shortening is due to filament sliding associated with muscle activation and that a small portion is due to continued deformation associated with an element that shows viscoelastic or power-law creep after a step change in force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号