首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
海洋产电菌Shewanella marisflavi EP1的脱色特性   总被引:1,自引:0,他引:1  
以一株新筛选得到的海洋产电菌Shewanella marisflavi EP1作为实验材料,研究了该菌株关于偶氮、蒽醌、三苯基甲烷等染料的脱色能力及脱色机制。结果表明,该菌株对这些染料均具有较好的脱色能力,最高脱色容量达到925 mg染料/(g细胞干重.d)。EP1能利用葡萄糖、蔗糖、木糖、乳酸、甲酸、柠檬酸等多种碳源将单偶氮染料丽春红2R脱色。脱色的pH、温度和NaCl浓度范围分别是:pH 6-10、15°C-40°C、0-8%。最优脱色条件:乳酸,pH 8、35°C、1%-2%NaCl,10 h内脱色率高达99.95%。分光光谱结果表明,在0-8%NaCl浓度范围内EP1脱色机制为降解脱色。  相似文献   

2.
Azo dye decolorization was studied with Shewanella strains under saline conditions. Growing cells of Shewanella algae and Shewanella marisflavi isolated from marine environments demonstrated better azo dye decolorization capacities than the other three strains from non-saline sources. Cell suspensions of S. algae and S. marisflavi could decolorize single or mixed azo dyes with different structures. Decolorization kinetics were described with Michaelis–Menton equation, which indicated better decolorization performance of S. algae over S. marisflavi. Lactate and formate were identified as efficient electron donors for amaranth decolorization by the two strains. S. algae and S. marisflavi could decolorize amaranth at up to 100 g?L?1 NaCl or Na2SO4. However, extremely low concentration of NaNO3 exerted strong inhibition on decolorization. Both strains could remove the color and COD of textile effluent during sequential anaerobic–aerobic incubation. Lower concentrations of NaCl (20–30 g?L?1) stimulated the activities of azoreductase, laccase, and NADH-DCIP reductase. The decolorization intermediates were identified by high-performance liquid chromatography and Fourier transform infrared spectroscopy. Decolorization metabolites of amaranth were less toxic than original dye. These findings improved our knowledge of azo-dye-decolorizing Shewanella species and provided efficient candidates for the treatment of dye-polluted saline wastewaters.  相似文献   

3.
Presence of huge amount of salts in the wastewater of textile dyeing industry is one of the major limiting factors in the development of an effective biotreatment system for the removal of azo dyes from textile effluents. Bacterial spp. capable of thriving under high salt conditions could be employed for the treatment of saline dye-contaminated textile wastewaters. The present study was aimed at isolating the most efficient bacterial strains capable of decolorizing azo dyes under high saline conditions. Fifty-eight bacterial strains were isolated from seawater, seawater sediment, and saline soil, using mineral salt medium enriched with 100?mg?l?1 Reactive Black-5 azo dye and 50?g NaCl l?1 salt concentration. Bacterial strains KS23 (Psychrobacter alimentarius) and KS26 (Staphylococcus equorum) isolated from seawater sediment were able to decolorize three reactive dyes including Reactive Black 5, Reactive Golden Ovifix, and Reactive Blue BRS very efficiently in liquid medium over a wide range of salt concentration (0–100?g NaCl l?1). Time required for complete decolorization of 100?mg dye l?1 varied with the type of dye and salt concentration. In general, there was an inverse linear relationship between the velocity of the decolorization reaction (V) and salt concentration. This study suggested that bacteria isolated from saline conditions such as seawater sediment could be used in designing a bioreactor for the treatment of textile effluent containing high concentration of salts.  相似文献   

4.
Anaerobic acclimatization of activated sludge from a textile effluent treatment plant to high concentration of RB5 could effectively decolorize RB5 dye solution. The strains viz. Pseudomonas aeruginosa and Bacillus circulans and other unidentified laboratory isolates (NAD1 and NAD6) were predominantly present in the microbial consortium. The conditions for efficient decolorization, biostimulation to increase effectiveness of microbial consortium, its tolerance to high salt concentration and non-specific ability towards decolorization of eight azo dyes, are reported. The optimum inoculums concentration for maximum decolorization were found to be 1-5 ml of 1800+/-50 mg l(-1) MLSS and 37 degrees C, respectively. The decolorization efficiency was 70-90% during 48 h. The biomass showed efficient decolorization even in the presence of 10% NaCl, as tested with RB5. In the presence of flavin adenine dinucleotide (FAD) more than 99% decolorization occurred in 8h. The decolorization of RB5 was traced to extracellular enzymes. The effectiveness of acclimatized biomass under optimized conditions towards decolorization of two types of synthetic dye bath wastewaters that were prepared using chosen azo dyes is reported.  相似文献   

5.
Studies were carried out on the decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Among the 27 strains of halophilic and halotolerant bacteria isolated from effluents of textile industries, three showed remarkable ability in decolorizing the widely utilized azo dyes. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparisons indicate that these strains belonged to the genus Halomonas. The three strains were able to decolorize azo dyes in a wide range of NaCl concentration (up to 20%w/v), temperature (25-40 degrees C), and pH (5-11) after 4 days of incubation in static culture. They could decolorize the mixture of dyes as well as pure dyes. These strains also readily grew in and decolorized the high concentrations of dye (5000 ppm) and could tolerate up to 10,000 ppm of the dye. UV-Vis analyses before and after decolorization and the colorless bacterial biomass after decolorization suggested that decolorization was due to biodegradation, rather than inactive surface adsorption. Analytical studies based on HPLC showed that the principal decolorization was reduction of the azo bond, followed by cleavage of the reduced bond.  相似文献   

6.
The effect of Acid Orange 7, Acid Red 18 and Reactive Black 5 on the growth and decolorization properties of Schizophyllum commune was studied with respect to the initial pH varying from 1 to 6 and initial dye concentration (10-100 mg/L). The optimum pH value was found to be 2 for both growth and color removal of these azo dyes. Increasing the concentration of azo dyes inhibited the growth of S. commune. It was observed that S. commune was capable of removing Acid Orange 7, Acid Red 18 and Reactive Black 5 with a maximum specific uptake capacity of 44.23, 127.53 and 180.17 (mg/g) respectively for an initial concentration of 100 mg/L of the dye. Higher decolorization was observed at lower concentrations for all the dyes. Finally it was found that the percentage decolorization was more in the case of Reactive Black 5 dye compared to the other two dyes used in the present investigation.  相似文献   

7.
Shewanella xiamenensis BC01 (SXM) was isolated from sediment collected off Xiamen, China and was identified based on the phylogenetic tree of 16S rRNA sequences and the gyrB gene. This strain showed high activity in the decolorization of textile azo dyes, especially methyl orange, reactive red 198, and recalcitrant dye Congo red, decolorizing at rates of 96.2, 93.0, and 87.5 %, respectively. SXM had the best performance for the specific decolorization rate (SDR) of azo dyes compared to Proteus hauseri ZMd44 and Aeromonas hydrophila NIU01 strains and had an SDR similar to Shewanella oneidensis MR-1 in Congo red decolorization. Luria-Bertani medium was the optimal culture medium for SXM, as it reached a density of 4.69 g-DCW L?1 at 16 h. A mediator (manganese) significantly enhanced the biodegradation and flocculation of Congo red. Further analysis with UV–VIS, Fourier Transform Infrared spectroscopy, and Gas chromatography–mass spectrometry demonstrated that Congo red was cleaved at the azo bond, producing 4,4′-diamino-1,1′-biphenyl and 1,2′-diamino naphthalene 4-sulfonic acid. Finally, SEM results revealed that nanowires exist between the bacteria, indicating that SXM degradation of the azo dyes was coupled with electron transfer through the nanowires. The purpose of this work is to explore the utilization of a novel, dissimilatory manganese-reducing bacterium in the treatment of wastewater containing azo dyes.  相似文献   

8.
The biological decolorization of the textile azo dye Reactive Red 2 was investigated using a mixed, mesophilic methanogenic culture, which was developed with mixed liquor obtained from a mesophilic, municipal anaerobic digester and enriched by feeding a mixture of dextrin/peptone as well as media containing salts, trace metals and vitamins. Batch decolorization assays were conducted with the unacclimated methanogenic culture and dye decolorization kinetics were determined as a function of initial dye, biomass, and carbon source concentrations. Dye decolorization was inhibited at initial dye concentrations higher than 100 mg l-1 and decolorization kinetics were described based on the Haldane model. The effect of long-term culture exposure to the reactive dye on decolorization kinetics, culture acclimation, as well as possible dye mineralization was tested using two reactors fed weekly for two years with an initial dye concentration of 300 mg l-1 and a mixture of dextrin/peptone. The maximum dye decolorization rate after a 2-year acclimation at an initial dye concentration of 300 mg l-1 was more than 10-fold higher as compared to that obtained with the unacclimated culture. Aniline and the o-aminohydroxynaphthalene derivative resulting from the reductive azo bond cleavage of the dye were detected, but further transformation(s) leading to dye mineralization were not observed. Reactive Red 2 did not serve as the carbon and energy source for the mixed culture, and dye decolorization was sustained by the continuous addition of dextrin and peptone. Thus, biological decolorization of reactive azo dyes is feasible under conditions of low redox potential created and maintained in overall methanogenic systems, but supply of a biodegradable carbon source is necessary.  相似文献   

9.
The effects of humic acid (HA) on azo dye decolorization by Shewanella oneidensis MR-1 were studied. It was found that HA species isolated from different sources could all accelerate the decolorization of Acid Red 27 (AR27). Anoxic and anaerobic conditions were required for the enhancement of azo dye decolorization by HA. In the presence of 50 mg DOC L−1 Aldrich HA, 15–29% increases in decolorization efficiencies of azo dyes with different structures were achieved in 11 h. The enhancing effects increased with the increase of HA concentrations ranging from 25 to 150 mg DOC L−1, and the decolorization rates were directly proportional to the HA concentrations when they were below 100 mg DOC L−1. Lactate and formate were good electron donors for AR27 decolorization in the presence of HA. Both nitrate (0.1–3.0 mM) and nitrite (0.3–1.2 mM) inhibited AR27 decolorization in the presence of HA, and negligible decolorization was observed before their removal. Soluble FeCl3 could accelerate the decolorization process in the presence of HA, whereas insoluble hematite could not. These findings may affect the understanding of bioremediation of azo dye-polluted environments and help improve the treatment of azo dye wastewaters.  相似文献   

10.
Presence of heavy metals including lead (Pb) in the textile effluents is a crucial factor affecting the growth and potential of the dye decolorizing bacterial strains. This work was planned to isolate and characterize a bacterial strain exhibiting the potential to decolorize a range of azo dyes as well as the resistance to Pb. In this study, several Pb tolerant bacteria were isolated from effluents of textile industry. These bacterial isolates were screened for their potential of decolorizing the reactive red-120 (RR120) azo dye with presence of Pb (50 mg L?1). The most efficient isolate was further characterized for its potential to resist Pb and decolorize different azo dyes under varying cultural and incubation conditions. Out of the total 82 tested bacterial isolates, 30 bacteria were found to have varying potentials to resist the presence of lead (Pb) and carry out decolorization of an azo dye reactive red-120 (RR120) in the medium amended with Pb (50 mg L?1). The most efficient selected bacterium, Pseudomonas aeruginosa strain HF5, was found to show a good potential not only to grow in the presence of considerable concentration of Pb but also to decolorize RR120 and other azo dyes in the media amended with Pb. The strain HF5 completely (>?90%) decolorized RR120 in mineral salt medium amended with 100 mg L?1 of Pb and 20 g L?1 NaCl. This strain also considerably (>?50%) decolorized RR120 up to the presence of 2000 mg L?1 of Pb and 50 g L?1 of NaCl but with reduced rate. The optimal decolorization of RR120 by HF5 was achieved when the pH of the Pb amended (100 mg L?1) mineral salt media was adjusted at 7.5 and 8.5. Interestingly, this strain also showed the tolerance to a range of metal ions with varying MIC values. The Pseudomonas aeruginosa strain HF5 harboring the unique potentials to grow and decolorize the azo dyes in the presence of Pb is envisaged as a potential bioresource for devising the remediation strategies for treatment of colored textile wastewaters loaded with Pb and other heavy metal ions.  相似文献   

11.
Adsorption and decolorization kinetics of methyl orange by anaerobic sludge   总被引:1,自引:0,他引:1  
Adsorption and decolorization kinetics of methyl orange (MO) by anaerobic sludge in anaerobic sequencing batch reactors were investigated. The anaerobic sludge was found to have a saturated adsorption capacity of 36 ± 1 mg g MLSS−1 to MO. UV/visible spectrophotometer and high-performance liquid chromatography analytical results indicated that the MO adsorption and decolorization occurred simultaneously in this system. This process at various substrate concentrations could be well simulated using a modified two-stage model with apparent pseudo first-order kinetics. Furthermore, a noncompetitive inhibition kinetic model was also developed to describe the MO decolorization process at high NaCl concentrations, and an inhibition constant of 3.67 g NaCl l−1 was estimated. This study offers an insight into the adsorption and decolorization processes of azo dyes by anaerobic sludge and provides a better understanding of the anaerobic dye decolorization mechanisms.  相似文献   

12.
耐盐偶氮染料脱色菌株GYW的筛选及特性   总被引:4,自引:0,他引:4  
从某印染厂排水沟的底泥中分离筛选到1株对偶氮染料具有脱色能力的耐盐菌株GYW, 经16S rDNA序列分析, 鉴定为盐单胞菌属(Halomonas)中度耐盐菌。实验结果表明, 菌株GYW可以耐受10%以上的高盐度, 对酸性大红GR和其它偶氮染料具有广谱的脱色能力, 处于对数生长期的细胞脱色能力最强。对酸性大红GR的最佳脱色条件为:温度30°C, pH 7.5, LB培养基。氯离子对酸性大红GR脱色的抑制作用较强, 硫酸盐对脱色影响不大, 添加甜菜碱可提高染料的脱色速率, 最佳添加量为200 mg/L。  相似文献   

13.
Shan X J  Jin X S  Zhou Z P  Dai F Q 《农业工程》2012,32(5):240-243
Anthropogenic activities and environmental changes have had a significant effect on the fishery ecosystem, biological characteristics, and population dynamics of marine fishes. Overfishing threatens the sustainability of many populations. We evaluated changes in the biological characteristics, distribution, and abundance of Cleisthenes herzensteini using bottom trawl survey data collected from 1985 to 2010 in the central and southern Yellow Sea. The dominant body length of C. herzensteini during spring was 80–160 mm in 1986, 60–160 mm in 1998, and 41–80 mm and 111–170 mm in 2010. During summer, the dominant body length was 80–180 mm and 130–169 mm in 2000 and 2007, respectively. During autumn, the dominant body length was 60–160 mm, 100–180 mm, and 90–149 mm in 1985, 2000, and 2009, respectively. During winter, the dominant body length was 80–200 mm, 120–220 mm, and 100–200 mm in 1985, 1999, and 2010, respectively. The dominant body length decreased gradually from 1985 to 2010 (excluding spring, 2010), illustrating the “miniaturization” of the C. herzensteini population. Growth was significantly different between male and female individuals, with male individuals forming a “smaller-size type”. The sex ratio of C. herzensteini was relatively stable during spring and summer, but significantly different during autumn and winter. The diet of C. herzensteini also changed significantly from 1985 to 2010. During 1985–1986, the diet consisted primarily of Crangon affinis, Eualus sinensis and Gammaridae species. C. affinis, Engraulis japonicus, and Ammodytes personatus were dominant during 1998–2000, whereas C. affinis was the dominant prey species during 2009–2010. Thus, there was a clear decrease in dietary diversity, with a shift to benthos shrimp, particularly C. affinis, which accounted for 82.58% of the total diet (by weight) in 2010. The gastric vacuous rate also decreased in every season and the gonad developmental stage changed with each season. The distribution of C. herzensteini shifted northward and offshore and became more concentrated. The average catch per haul of C. herzensteini decreased in spring and autumn. The average catch per haul ranged from 1.44 kg h-1 to 0.14 kg h-1 in spring and the percentage by weight ranged from 6.53% to 1.28%. The average catch per haul ranged from 3.03 kg h-1 to 0.26 kg h-1 in autumn and the percentage by weight ranged from 8.00% to 0.60%. The average catch per haul increased significantly during summer, ranging from 0.18 kg h-1 to 0.58 kg h-1, with a percentage by weight of 0.03–0.80%. The average catch per haul was relatively stable in winter (around 1.00 kg h-1), but the percentage by weight gradually increased during 1985–2010. Taken together, our results suggested that the population structure, diet composition, and distribution of C. herzensteini had been altered during the last three decades. To address this, it is essential to initiate measures to conserve the C. herzensteini resource.  相似文献   

14.
The vertical biomass allocation patterns of roots grown under standardised conditions were determined for species representing the major New Zealand indigenous grass genera Chionochloa and Festuca. Ten ramets, each of 2–3 tillers from garden collections of each species were grown in irrigated vertical sand columns in a glasshouse, and harvested after 168 days. Chionochloa teretifolia, Chionochloa macra, and Chionochloa crassiusucula, characteristic of alpine environments failed to produce new roots and died. However, most of the Chionochloa taxa (Chionochloa beddiei, Chionochloa pallens, Chionochloa rigida ssp. rigida, Chionochloa rubra ssp. cuprea, Chionochloa vireta), developed extensive new roots that reached the base of the one metre sand column. Roots of Chionochloa cheesemanii and Chionochloa conspicua reached 80–90 cm depth. Two Festuca taxa (Festuca actae, Festuca luciarum) had roots to 1 m depth, and roots of Festuca coxii, Festuca matthewsii ssp. latifundii, Festuca matthewsii ssp. matthewsii, Festuca multinodis, and Festuca novae-zelandiae grew to 70–90 cm depth. The edaphic specialists (Festuca deflexa, Chionochloa spiralis, Chionochloa defracta) were all shallow rooting.Species of Festuca maintained at least 40% of the root mass in the upper 10 cm of the column and most of the Chionochloa taxa had less than 40% of root mass in the upper zone. Genotype level variation in root mass less than 10 cm deep was greater in Chionochloa than in Festuca, and least in the edaphic specialist grasses.  相似文献   

15.
A Pseudomonas luteola strain possessing azoreductase activity was utilized to decolorize a reactive azo dye (C. I. Reactive Red 22) with fed-batch processes consisting of an aerobic cell growth stage and an anaerobic fed-batch decolorization stage. The fed-batch decolorization was conducted with different agitation and aeration rates, initial culture volumes, dye loading strategies, and yeast extract to dye (Y/D) ratios, and the effect of those operation parameters on azo dye decolorization was evaluated. Dissolved oxygen strongly inhibited the azo reduction activity; thus aeration should be avoided during decolorization but slight agitation (around 50 rpm) was needed. With the periodical feeding strategy, the specific decolorization rate (v(dye)) and overall decolorization efficiency (eta(dye)) tended to increase with increasing feeding concentrations of dye, whereas substrate inhibition seems to arise when the feeding concentration exceeded 600 mg dye/L. In the continuous feeding mode, higher initial culture volume resulted in better eta(dye) due to higher biomass loading, but lower v(dye) due to lower dye concentration in the bioreactor. With a volumetric flow rate (F) of 25 mL/h, both v(dye) and eta(dye) increased almost linearly with the increase in the loading rate of dye (F(dye)) over the range of 50-200 mg/h, while further increase in F(dye) (400 mg/h) gave rise to a decline in v(dye) and eta(dye). As the F was doubled (50 mL/h), the v(dye) and eta(dye) increased with F(dye) only for F(dye) < 80 mg/h. The best v(dye) (113.7 mg dye g cell(-)(1) h(-)(1)) and eta(dye) (86.3 mg dye L(-)(1) h(-)(1)) were achieved at F(dye) = 200 mg/h and F = 25 mL/h. The yield coefficient representing the relation between dye decolorized and yeast extract consumed was estimated as 0.8 g/g. With F(dye) = 75 mg/h, the Y/D ratio should be higher than 0.5 to ensure sufficient supply of yeast extract for stable fed-batch operations. However, performance of the fed-batch decolorization process was not appreciably improved by raising the Y/D ratio from 0.5 to 1.875 but was more sensitive to the changes in the dye loading rate.  相似文献   

16.
Patil AV  Lokhande VH  Suprasanna P  Bapat VA  Jadhav JP 《Planta》2012,235(5):1051-1063
Sesuvium portulacastrum is a common halophyte growing well in adverse surroundings and is exploited mainly for the environmental protection including phytoremediation, desalination and stabilization of contaminated soil. In the present investigation, attempts have been made on the decolorization of a toxic textile dye Green HE4B (GHE4B) using in vitro grown Sesuvium plantlets. The plantlets exhibited significant (70%) decolorization of GHE4B (50 mg l(-1)) that sustain 200 mM sodium chloride (NaCl) within 5 days of incubation. The enzymatic analysis performed on the root and shoot tissues of the in vitro plantlets subjected to GHE4B decolorization in the presence of 200 mM NaCl showed a noteworthy induction of tyrosinase, lignin peroxidase and NADH-DCIP reductase activities, indicating the involvement of these enzymes in the metabolism of the dye GHE4B. The UV-visible spectrophotometer, HPLC and Fourier Transform Infrared Spectroscopy (FTIR) analyses of the samples before and after decolorization of the dye confirmed the efficient phytotransformation of GHE4B in the presence of 200 mM NaCl. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis of the products revealed the formation of three metabolites such as p -amino benzene, p -amino toluene and 1, 2, 7-amino naphthalene after phytotransformation of GHE4B. Based on the FTIR and GC-MS results, the possible pathway for the biodegradation of GHE4B in the presence of 200 mM NaCl has been proposed. The phytotoxicity experiments confirmed the non-toxicity of the degraded products. The present study demonstrates for the first time the potential of Sesuvium for the efficient degradation of textile dyes and its efficacy on saline soils contaminated with toxic compounds.  相似文献   

17.
脱色希瓦氏菌(Shewanella decolorationis)S12T的脱色特性   总被引:4,自引:0,他引:4  
从印染废水活性污泥中分离到一株高效染料脱色菌,经鉴定该菌株为希瓦氏菌属的一个新种,命名为脱色希瓦氏菌(Shewanelladecolorationis)S12T。该菌株在偶氮染料浓度为50mg/L的培养基中培养4h后,染料去除率达到96%,对偶氮染料的最高脱色浓度达到2000mg/L。在浓度为500mg/L的偶氮染料平板上生长4d后,可观察到明显的脱色圈。全波长光谱扫描的结果表明希瓦氏菌S12T以生物降解的方式对偶氮染料进行脱色。希瓦氏菌S12T的脱色酶为组成型的胞内酶。  相似文献   

18.
担子菌PM2在限氮液体培养下,分泌木质素过氧化物酶和锰过氧化物酶;藜芦醇、吐温 80的补充,提高了该菌锰过氧化物酶的产生,获得的最大锰过氧化物酶Mnp酶活为254.2u/L、190.2 u/L,分别是对照的3.4倍和2.5倍。选择三种偶氮染料,在染料体系下,进一步分析藜芦醇、吐温 80对担子菌PM2产过氧化物酶及染料脱色的影响。结果表明,担子菌PM2分泌的锰过氧化物酶Mnp与染料脱色有关,脱色程度受其分子结构特征影响;吐温80的补充,更有利于染料的脱色降解,48h后三种染料均可达到80%以上的脱色率。  相似文献   

19.
氧气对混合菌群脱色降解偶氮染料效果的影响   总被引:1,自引:1,他引:0  
【背景】偶氮染料及其中间产物具有一定的环境毒性,利用混合菌群降解偶氮染料是一种环境友好型方法,但降解过程中氧气的存在起到至关重要的作用,可以促进或抑制偶氮染料的微生物降解作用。【目的】探讨氧气对偶氮染料微生物脱色液的影响,分析氧气对混合菌群脱色降解偶氮染料效果的影响。【方法】利用混合菌群DDMY1在3种培养条件(好氧、厌氧、兼氧)下,对7种偶氮染料进行脱色降解,探讨偶氮染料脱色液对氧气的响应情况,利用紫外可见分光光度法(ultraviolet visible spectrophotometry,UV-vis)和傅里叶变换红外光谱法(Fourier transform infrared spectroscopy,FTIR)对脱色产物进行分析。【结果】在兼氧和厌氧条件下反应48 h后的染料脱色液,与氧气充分接触后,部分偶氮染料微生物脱色液发生较为明显的复色现象,如活性黑5、直接黑38;UV-vis分析结果表明,这种复色现象是由于脱色液与氧气接触之后产生新物质所致;FTIR分析结果表明,混合菌群对发生复色反应的偶氮染料仍然具有一定脱色降解效果,但是脱色尚不够完全。【结论】兼氧和厌氧条件下,氧气对部分偶氮染料微生物脱色液具有较为明显的影响,从而影响混合菌群对偶氮染料的整体脱色效果,这可为今后研究偶氮染料彻底生物降解提供理论基础。  相似文献   

20.
Shewanella decolorationis S12 is capable of high rates of azo dye decolorization and dissimilatory Fe(III) reduction. Under anaerobic conditions, when Fe(III) and azo dye were copresent in S12 cultures, dissimilatory Fe(III) reduction and azo dye biodecolorization occurred simultaneously. Furthermore, the dye decolorization was enhanced by the presence of Fe(III). When 1 mM Fe(III) was added, the methyl red decolorizing efficiency was 72.1% after cultivation for 3 h, whereas the decolorizing efficiency was only 60.5% in Fe(III)-free medium. The decolorizing efficiencies increased as the concentration of Fe(III) was increased from 0 to 6 mM. Enzyme activities, which mediate the dye decolorization and Fe(III) reduction, were not affected by preadaption of cells to Fe(III) and azo dye nor by the addition of chloramphenicol. Both the Fe(III) reductase and the azo reductase were membrane associated. The respiratory electron transport chain inhibitors metyrapone, dicumarol, and stigmatellin showed significantly different effects on Fe(III) reduction than on azo dye decolorization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号