首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Segmental vascular resistances and compliances in dog lung   总被引:1,自引:0,他引:1  
The segmental distribution of vascular resistances and compliances were evaluated in isolated blood perfused lung lobes using arterial, venous, and double-occlusion pressures and were compared with filtration midpoint capillary pressures (Pc,f). We separated total vascular resistance (RT) and compliance (CT) into large artery (Ra, Ca), large vein (Rv, Cv), and microvascular compartments (Rmc, Cmc) at base-line and increased vascular pressures and during infusions of histamine, serotonin, and norepinephrine. In control lobes, double-occlusion pressure (Pdo) closely approximated Pc,f at all vascular pressures. Pre- and postcapillary resistance were approximately equal when referenced to either Pc,f or Pdo. Although Rmc comprised 42% of RT and Cmc constituted 76% of CT, a twofold increase in base-line Pc,f caused RT to decrease to 67% and Rmc/RT to 29% of control values, whereas CT decreased to 87% and Cmc/CT decreased to 88% of control values over the same Pc,f range. Mean static CT was 2.25 +/- 0.09 ml X cmH2O-1. 100 g-1, whereas dynamic CT was 1.54 +/- 0.08 ml X cmH2O-1. 100 g-1, or only 68% of static vascular compliance. Drug infusions increased mean RT from 4.2- to 5.3-fold and significantly decreased both static and dynamic CT. Although all vascular segments were constricted, histamine affected primarily large veins, serotonin increased Ra greater than Rv, and norepinephrine constricted upstream and downstream vessels about equally. Increased Pc,f in the presence of these drugs decreased RT significantly in every case primarily through attenuation of the drug vasoconstrictor effect on Rmc and decreased CT primarily due to a decrease in Cmc, but increased Cmc/(Ca + Cv). Thus the microvascular compartment appears to be the major site of both fluid filtration and vascular compliance and contributes significantly to total vascular resistance. Drug infusions constricted large and small vessel compartments as defined here, but increased Pc,f attenuated microvascular vasoconstriction and to a lesser extent large vessel vasoconstriction resulting in a reduced microvascular resistance in both drug-treated and control lobes. This effect can be attributed to recruitment and/or distension of microvessels and distension of larger vessels.  相似文献   

2.
In this study, 14 canine lung lobes were isolated and perfused with autologous blood at constant pressure (CP) or constant flow (CF). Pulmonary capillary pressure (Pc) was measured via venous occlusion or simultaneous arterial and venous occlusions. Arterial and venous pressures and blood flow were measured concurrently so that total pulmonary vascular resistance (RT) as well as pre- (Ra) and post- (Rv) capillary resistances could be calculated. In both CP and CF perfused lobes, 5-min arachidonic acid (AA) infusions (0.085 +/- 0.005 to 2.80 +/- 0.16 mg X min-1 X 100 g lung-1) increased RT, Rv, and Pc (P less than 0.05 at the highest dose), while Ra was not significantly altered and Ra/Rv fell (P less than 0.05 at the highest AA dose). In five CP-perfused lobes, the effect of AA infusion on the pulmonary capillary filtration coefficient (Kf,C) was also determined. Neither low-dose AA (0.167 +/- 0.033 mg X min-1 X 100 g-1) nor high-dose AA (1.35 +/- 0.39 mg X min-1 X 100 g-1) altered Kf,C from control values (0.19 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1). The hemodynamic response to AA was attenuated by prior administration of indomethacin (n = 2). We conclude that AA infusion in blood-perfused canine lung lobes increased RT and Pc by increasing Rv and that microvascular permeability is unaltered by AA infusion.  相似文献   

3.
In this study, we present a new approach for using the pressure vs. time data obtained after various vascular occlusion maneuvers in pump-perfused lungs to gain insight into the longitudinal distribution of vascular resistance with respect to vascular compliance. Occlusion data were obtained from isolated dog lung lobes under normal control conditions, during hypoxia, and during histamine or serotonin infusion. The data used in the analysis include the slope of the arterial pressure curve and the zero time intercept of the extrapolated venous pressure curve after venous occlusion, the equilibrium pressure after simultaneous occlusion of both the arterial inflow and venous outflow, and the area bounded by equilibrium pressure and the arterial pressure curve after arterial occlusion. We analyzed these data by use of a compartmental model in which the vascular bed is represented by three parallel compliances separated by two series resistances, and each of the three compliances and the two resistances can be identified. To interpret the model parameters, we view the large arteries and veins as mainly compliance vessels and the small arteries and veins as mainly resistance vessels. The capillary bed is viewed as having a high compliance, and any capillary resistance is included in the two series resistances. With this view in mind, the results are consistent with the major response to serotonin infusion being constriction of large and small arteries (a decrease in arterial compliance and an increase in arterial resistance), the major response to histamine infusion being constriction of small and large veins (an increase in venous resistance and a decrease in venous compliance), and the major response to hypoxia being constriction of the small arteries (an increase in arterial resistance). The results suggest that this approach may have utility for evaluation of the sites of action of pulmonary vasomotor stimuli.  相似文献   

4.
We examined the effects of leukotrienes C4 (LTC4) and D4 (LTD4) (1 microgram) on the pulmonary vascular filtration coefficient, a measure of vessel wall conductivity to water, and the alterations in pulmonary vascular resistance (PVR) in isolated-perfused guinea pig lungs. We also assessed whether LTC4 and LTD4 increased the permeability to albumin in cultured monolayers of pulmonary artery endothelial cells. In Ringer-perfused and blood-perfused lungs, LTC4 resulted in increases in pulmonary arterial pressure (Ppa) and the pulmonary capillary pressure (Pcap) measured as the equilibration pressure after simultaneous pulmonary arterial and venous occlusions. Pulmonary venous resistance (Rv) increased to a greater extent than arterial resistance (Ra) in both Ringer-perfused and blood-perused lungs challenged with LTC4. The greater increase in PVR in blood-perfused lungs corresponded with a greater elevation of lung effluent thromboxane B2 (TxB2) concentration. The LTC4-stimulated increase in PVR was prevented by pretreatment with meclofenamate (10(-4) M). LTD4 also induced rapid increases in Ppa and Pcap in both Ringer-perfused and blood-perfused lungs; however, Ppa decreased before stabilizing at a pressure higher than base line. The increases in Rv with LTD4 were greater than Ra. The LTD4-stimulated increases in Ra and Rv also paralleled the elevation in TxB2 concentration. As with LTC4, the increases in Ppa, Pcap, PVR, and TxB2 concentration were greater in blood-perfused than in Ringer-perfused lungs. Pretreatment with meclofenamate reduced the magnitude of the initial increase in Ppa, but did not prevent the response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
To determine the role of prostaglandins in porcine pulmonary hemodynamic changes caused by histamine, we compared responses to intravenous histamine with and without pre-treatment with the cyclo-oxygenase inhibitor, indomethacin. In anesthetized pigs, pulmonary artery pressure (Ppa), pulmonary arterial wedge pressure (Ppaw), left ventricular end diastolic pressure (Plved) and cardiac output (Q) were measured repeatedly for 30 minutes, following a 1 ml intrajugular injection of histamine 0.6 microM/kg (n = 6), the identical histamine dose after pre-treatment with indomethacin 5 mg/kg (n = 7), or normal saline (n = 5). Pulmonary arterial resistance (Ra) and pulmonary venous resistance (Rv) were calculated as (Ppa-Ppaw)/Q and (Ppaw-Plved)/Q respectively. Indomethacin pre-treatment caused 2-fold greater increases in Ra and Rv with histamine and more prolonged changes. We conclude that inhibition of a vasodilatory prostaglandin released from pulmonary endothelial cells results in unopposed pulmonary vasoconstriction, thereby augmenting pulmonary resistance changes due to histamine.  相似文献   

6.
To study the effect of chronic cigarette smoke exposure on the resistive properties of the pulmonary vasculature, left lower lobes from 12 control beagles and 6 beagles who had smoked cigarettes (50 cigarettes/wk for 40 wk) were perfused in situ to measure the vascular pressure-flow relationship and the resistance of the three vascular segments with the arterial and venous occlusion technique. In control subjects the vascular resistance in the arterial, middle, and venous segments was 23, 36, and 41% of the total, respectively. The segmental distribution of vascular resistance was not significantly different in the cigarette smoke-exposed dogs, despite the fact that the absolute values were 30-40% less than that of the control group. The longitudinal distribution of resistance among the three vascular segments and their response to drugs were different in beagles than was previously found in mongrels. In all beagles the veins were considerably more reactive than arteries. Vasoconstriction with serotonin (5-HT) prostaglandin F2 alpha (PGF2 alpha), norepinephrine, histamine, and methacholine (M) infusion occurred predominantly in the veins. The effect of PGF2 alpha and 5-HT was totally different than that previously observed in mongrels in which the constriction was predominantly in the arteries. Chronic cigarette smoking reduced the basal pulmonary vascular resistance and attenuated the venoconstrictor response to 5-HT and M but potentiated the hypoxic pressor response of the microvessels.  相似文献   

7.
The lung may release prostacyclin (PGI2) in response to humoral or mechanical stimuli. We measured 6 keto-PGF1 alpha as an index of PGI2 production during serotonin (5-HT) infusion, elevated venous pressure (Pv), or increased blood flow (Q) in the isolated canine lower left lung lobe (LLL). Lobar vascular resistance (LVR) was partitioned into arterial (Ra), middle (Rm), and venous (Rv) components by arterial and venous occlusions. The infusion of 55-210 micrograms/min 5-HT (n = 9) was associated with concomitant increases in PGI2 production and dose-related increases in pulmonary arterial pressure (Pa) and LVR. 5-HT increased Ra at each infusion rate, whereas Rm was not changed and Rv was increased only at the highest infusion rate. When Pa was increased by stepwise elevations in Pv from 3.7 to 19.1 cmH2O (n = 8) or by increases in Q from 250 to 507 ml/min (n = 5) to match the Pa increase observed during 5-HT infusion, PGI2 production was not altered. Increases in Pv reduced LVR largely by decreasing Ra, whereas increases in Q reduced LVR without changing Ra, Rm, or Rv. Infusion of 5-HT when Pa was held constant by reduction in blood flow (n = 6) did not increase PGI2. Thus infusion of 5-HT at a normal blood flow rate increased PGI2 formation in the isolated blood-perfused dog lung lobe. The results also suggest that sustained mechanical effects related to increased venous pressure or elevated blood flow are not associated with a sustained elevation of PGI2 formation.  相似文献   

8.
The vasopressor response to graded bolus doses (50-500 micrograms) of serotonin (5-hydroxytryptamine; 5-HT) was examined in the isolated canine lower left lung lobe (LLL) perfused at constant flow with autogenous blood before and after cyclooxygenase inhibition (COI). Lobar vascular resistance (LVR) was partitioned into pre- (Ra) and postcapillary (Rv) segments by venous occlusion with lobar blood volume changes monitored gravimetrically. Before COI, 5-HT produced transient, dose-dependent increases in pulmonary arterial pressure (Ppa) of 43.8 +/- 4.8-123.0 +/- 8.5% (n = 22) and simultaneous decreases in lobar blood volume (5.5 +/- 0.5-8.2 +/- 0.6 g/100 g LLL) with nearly proportionate increases in Ra and Rv at each 5-HT dose. After the initial challenge to 5-HT, LLL's were treated either with saline (n = 7) or one of three chemically distinct cyclooxygenase inhibitors. COI with 40 microM indomethacin (n = 6) or 45 microM meclofenamate (n = 6) increased resting LVR by 36.0 +/- 8.3% (P less than 0.01; n = 12) and decreased the Ra/Rv from 1.9 +/- 0.3 to 1.1 +/- 0.2 (P less than 0.01), whereas 1 mM aspirin (n = 3) caused a fourfold increase in resting LVR without affecting Ra/Rv. After indomethacin or meclofenamate treatment, the vasopressor response to graded doses of 5-HT was markedly potentiated as Ppa increased by 71.6 +/- 7.6-207.0 +/- 24.6%. COI did not potentiate the lobar vasopressor response to graded doses (10-100 micrograms) of norepinephrine (NE, n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effect of increased arterial pressure (Pa) on microvessel pressure (Pc) and edema following microvascular obstruction (100-micron glass spheres) was examined in the isolated ventilated dog lung lobe pump perfused with blood. Lobar vascular resistance (PVR) increased 2- to 10-fold following emboli when either Pa or flow was held constant. Microbead obstruction increased the ratio of precapillary to total PVR from 0.60 +/- 0.05 to 0.84 +/- 0.02 (SE) or to 0.75 +/- 0.06 (n = 6), as determined by the venous occlusion and the isogravimetric capillary pressure techniques, respectively. Isogravimetric Pc (5.0 +/- 0.7) did not differ from Pc obtained by venous occlusion (3.8 +/- 0.2 Torr, n = 6). After embolism, Pc in constant Pa decreased from 6.2 +/- 0.3 to 4.4 +/- 0.3 Torr (n = 16). In the constant-flow group, embolism doubled Pa while Pc increased only 40% (6.7 +/- 0.6 to 9.2 +/- 1.4 Torr, n = 6) with no greater edema formation than in the constant Pa groups. These data indicate poor transmission of Pa to filtering capillaries. Microembolism, even when accompanied by elevated Pa and increased flow velocity of anticoagulated blood of low leukocyte and platelet counts, caused little edema. Our results suggest that mechanical effects alone of lung microvascular obstruction cause minimal pulmonary edema.  相似文献   

10.
We have developed a model including three serial compliant compartments (arterial, capillary, and venous) separated by two resistances (arterial and venous) for interpreting in vivo single pulmonary arterial or venous occlusion pressure profiles and double occlusion. We formalized and solved the corresponding system of equations. We showed that in this model 1) pulmonary capillary pressure (Pc) profile after arterial or venous occlusion has an S shape, 2) the estimation of Pc by zero time extrapolation of the slow component of the arterial occlusion profile (Pcao) always overestimates Pc, 3) symmetrically such an estimation on the venous occlusion profile (Pcvo) always underestimates Pc, 4) double occlusion pressure (Pcdo) differs from Pc. We evaluated the impact of varying parameter values in the model with parameter sets drawn either from the literature or from arbitrary arterial and venous pressures, being respectively 20 and 5 mmHg. Resulting Pcao-Pc differences ranged from 0.4 to 5.4 mmHg and resulting Pcvo-Pc differences ranged from -0.3 to -5.0 mmHg. Pcdo-Pc was positive or negative, its absolute value in general being negligible (< 1.1 mmHg).  相似文献   

11.
Leukotrienes (LTs) C4 and D4 are vasoconstrictors and are thought to increase both systemic and pulmonary vascular permeability. However, we and others have observed that LTC4 and LTD4 cause pulmonary vasoconstriction but do not increase the fluid filtration coefficient of excised guinea pig lungs perfused with a cell-depleted perfusate. To determine what vascular segments were exposed to an LT-induced increase in intravascular hydrostatic pressure we measured pulmonary arterial (Ppa), pulmonary arterial occlusion (Po,a), venous (Po,v) and double occlusion (Pdo) pressures in isolated guinea pig lungs perfused with a cell-depleted buffered salt solution before and after injecting 4 micrograms of LTB4, LTC4, or LTD4 into the pulmonary artery. All three LTs increased airway pressures and also increased Ppa, Po,a, and Pdo. Histamine (15 micrograms) as well as serotonin (20 or 200 micrograms) had the same effect. In excised rabbit lungs, histamine and serotonin increased only Ppa, and Po,a. LTC4 had no vasoactivity. There are marked species variations with regard to the activity and site of action of histamine, serotonin, and LTC4 on the pulmonary circulation.  相似文献   

12.
We examined the effects of arachidonic acid (AA) on pulmonary hemodynamics and fluid balance in Ringer- and blood-perfused guinea pig lungs during constant-flow conditions. Mean pulmonary arterial (Ppa), venous (Pv), and capillary pressures (Pcap, estimated by the double-occlusion method) were measured, and arterial (Ra) and venous resistances (Rv) were calculated. Bolus AA injection (500 micrograms) caused transient increases (peak response 1 min post-AA) in Ppa, Pcap, and Rv without affecting Ra in both Ringer- and blood-perfused lungs. The response was sustained in blood-perfused lungs. AA had no effect on the capillary filtration coefficient in either Ringer- or blood-perfused lungs. AA stimulated the release of thromboxane B2 and 6-ketoprostaglandin F1 alpha in both Ringer- and blood-perfused lungs, but the responses were sustained only in the blood-perfused lungs. Meclofenamate (1.5 X 10(-4) M), a cyclooxygenase inhibitor, abolished the AA-induced pulmonary hemodynamic responses in both Ringer- and blood-perfused lungs, whereas U-60257 (10 microM), a lipoxygenase inhibitor, attenuated the response only in the blood-perfused lungs. In conclusion, AA does not alter pulmonary vascular permeability to water in either Ringer- or blood-perfused lungs. AA mediates pulmonary venoconstriction and thus contributes to the rise in Pcap. The venoconstriction results from the generation of cyclooxygenase-derived metabolites from lung parenchymal cells and blood-formed elements. Lipoxygenase metabolites may also contribute to the vasoconstriction in the blood-perfused lungs.  相似文献   

13.
Pulmonary vascular responsiveness in cold-exposed calves   总被引:1,自引:0,他引:1  
The pulmonary vascular responses to acute hypoxia and to infusions of histamine and 5-hydroxytryptamine (5-HT) were recorded in unanesthetized standing bull calves under neutral (16-18 degrees C) and cold (3-5 degrees C) temperature conditions. Cold exposure alone resulted in a significant increase in pulmonary arterial wedge pressure from 10.2 +/- 3.5 to 15.9 +/- 4.9 Torr (1 Torr = 133.322 Pa). Resistance to blood flow between the pulmonary wedge and the left atrium significantly increased from 0.50 +/- 0.51 to 1.21 +/- 0.78 mmHg . L-1 . min-1 (1 mmHg = 133.322 Pa) with cold exposure. This apparent pulmonary venoconstrictor response to cold exposure was further evaluated to determine if hypoxia, histamine, or 5-HT responsiveness was altered by cold exposure. Twelve minutes of hypoxia increased pulmonary arterial and systemic arterial pressures, heart rate, and respiratory rate similarly in cold and neutral temperatures. Cold exposure did not alter the dose-related reductions of systemic arterial and pulmonary arterial pressures in response to histamine. Similarly, the decreases in systemic arterial pressure and heart rate and increases in pulmonary arterial and left atrial pressures in response to 5-HT were not significantly different in cold and neutral conditions. It was concluded that acute, mild cold exposure results in an increase in resistance to blood flow in the pulmonary venous circulation without a general increase in pulmonary vascular reactivity, as measured by responses to hypoxia, histamine, and 5-HT.  相似文献   

14.
Hemodynamics and vascular permeability were studied during acute alveolar hypoxia in isolated canine lung lobes perfused at constant flow with autogenous blood. Hypoxia was induced in the presence (COI + Hypox, n = 6) or absence (Hypox, n = 6) of cyclooxygenase inhibition (COI) with indomethacin or meclofenamate. Hypoxic ventilation reduced blood PO2 from 143 to 25-29 Torr without a change in PCO2. During hypoxia a capillary filtration coefficient (Kf) was obtained gravimetrically as an index of vascular permeability to water. In COI + Hypox, pulmonary arterial pressure (Pa) increased from 11.5 +/- 0.7, post-COI normoxia, to a peak of 22.1 +/- 2.3 during hypoxia (P less than 0.01) without a change in capillary pressure (Pc). In contrast, hypoxia changed neither Pa nor Pc in Hypox relative to an untreated normoxic control group (Normox, n = 6, P greater than 0.05). Kfs (means +/- SE in ml.min-1.Torr-1.100 g-1) for Normox (0.070 +/- 0.014), Hypox (0.082 +/- 0.024), and COI + Hypox (0.057 +/- 0.017) did not differ from one another (P greater than 0.05). Although COI markedly enhanced the pressor response to acute alveolar hypoxia, hypoxia increased neither Pc nor vascular permeability regardless of COI.  相似文献   

15.
The canine lung lobe was embolized with 100-micron glass beads before lobectomy and blood anticoagulation. The lobe was isolated, ventilated, and pump-perfused with blood at an arterial pressure (Pa) of about 50 (high pressure, HP, n = 9) or 25 Torr (low pressure, LP, n = 9). Rus/PVR, the ratio of upstream (Rus) to total lobar vascular resistance (PVR), was determined by venous occlusion and the isogravimetric capillary pressure technique. The capillary filtration coefficient (Kf), an index of vascular permeability, was obtained from rate of lobe weight gain during stepwise capillary pressure (Pc) elevation. The embolized lobes became more edematous than nonembolized controls, (C, n = 11), (P less than 0.05), with Kf values of 0.20 +/- 0.04, 0.25 +/- 0.06, and 0.07 +/- 0.01 ml X min-1 X Torr-1 X 100 X g-1 in LP, HP, and C, respectively (P less than 0.05). The greater Rus/PVR in embolized lobes (P less than 0.05) protected the microvessels and, although Pc was greater in HP than in controls (P less than 0.05), Pc did not differ between HP and LP (P greater than 0.05). Although indexes of permeability did not differ between embolized groups (P greater than 0.05), HP became more edematous than LP (P less than 0.05). The greater edema in HP did not appear due to a greater imbalance of Starling forces across the microvessel wall or to vascular recruitment. At constant Pc and venous pressure, elevating Pa from 25 to 50 Torr in embolized lobes resulted in greater edema to suggest fluid filtration from precapillary vessels.  相似文献   

16.
Distribution of pulmonary vascular resistance in experimental fibrosis   总被引:3,自引:0,他引:3  
To elucidate mechanisms of pulmonary hypertension in interstitial fibrosis, we compared the left lower lobes (LLL) of six dogs in which fibrosis was induced by radiation and bleomycin with the normal right lower lobes (RLL) for 1) slope and intercept of the vascular pressure-flow (P-Q) curves, 2) segmental resistances with arterial and venous occlusion under base-line conditions, after serotonin and vasodilators, and 3) light-microscopic morphology and morphometry. We found that 1) the total volume and vascular compliance of the fibrotic LLL were five and four times less, respectively, than controls, 2) the slope and intercept of the P-Q curves in the LLL were 154.0 +/- 65.8 (SE) mmHg.l-1.min-1 and 8.2 +/- 1.5 mmHg, respectively, compared with 18.3 +/- 2.3 and 3.2 +/- 0.9 for the RLL, 3) the resistance of the arterial, middle, and venous segments in the LLL were higher than in the RLL, but middle segment resistance rose disproportionately, and 4) constriction of the arterial segment with serotonin was similar in LLL and RLL, and vasodilators were ineffective. Histologically, fibrosis involved 36% of the lung, and the capillary bed was severely obliterated. Arteries showed an increased percentage of medial and intimal thickening and peripheral muscularization; venous abnormalities were less marked. We conclude that pulmonary fibrosis increases vascular resistance mainly in the middle segment, largely by loss of tissue and obliteration of the microvasculature.  相似文献   

17.
The role of beta-adrenergic agonists, such as isoproterenol, on vascular capacitance is unclear. Some investigators have suggested that isoproterenol causes a net transfer of blood to the chest from the splanchnic bed. We tested this hypothesis in dogs by measuring liver thickness, cardiac output, cardiopulmonary blood volume, mean circulatory filling pressure, portal venous, central venous, pulmonary arterial, and systemic arterial pressures while infusing norepinephrine (2.6 micrograms.min-1.kg-1), or isoproterenol (2.0 micrograms.min-1.kg-1), or histamine (4 micrograms.min-1.kg-1), or a combination of histamine and isoproterenol. Norepinephrine (an alpha- and beta 1-adrenergic agonist) decreased hepatic thickness and increased mean circulatory filling pressure, cardiac output, cardiopulmonary blood volume, total peripheral resistance, and systemic arterial and portal pressures. Isoproterenol increased cardiac output and decreased total peripheral resistance, but it had little effect on liver thickness or mean circulatory filling pressure and did not increase the cardiopulmonary blood volume or central venous pressure. Histamine caused a marked increase in portal pressure and liver thickness and decreased cardiac output, but it had little effect on the estimated mean circulatory filling pressure. Isoproterenol during histamine infusions reduced histamine-induced portal hypertension, reduced liver size, and increased cardiac output. We conclude that the beta-adrenergic agonist, isoproterenol, has little influence on vascular capacitance or liver volume of dogs, unless the hepatic outflow resistance is elevated by agents such as histamine.  相似文献   

18.
Five chronically instrumented healthy dogs were exposed to a 5-day period of breathing 10% oxygen in a chamber. The response to hypoxia was found to be time dependent. During the first 24 h of hypoxia the circulatory response was characterized by increases in cardiac output, heart rate, pulmonary and systemic arterial blood pressures, and pulmonary vascular resistance. Systemic vascular resistance increased; left atrial pressure decreased. During the early part of hypoxia the animals became hypocapnic; the arterial blood pH rose significantly. During the rest of the hypoxic period cardiac output, heart rate, and arterial blood pH returned to the control values; pulmonary and systemic arterial pressures and pulmonary vascular resistance remained significantly elevated. Systemic vascular resistance rose; left atrial pressure remained below control. This response to hypoxia was not substantially modified when the experiment was repeated during the administration of the antihistamine promethazine, an H1-receptor blocking agent, in a dose which blocked the pulmonary vasoconstrictor response to small doses of exogenous histamine. The circulatory response to acute hypoxia in five anesthetized dogs was not modified by intravenous administration of metiamide, an H2-receptor blocking agent.  相似文献   

19.
Effects of histamine on bronchial artery blood flow and bronchomotor tone   总被引:5,自引:0,他引:5  
The effects of aerosolized 5% histamine (10 breaths) on bronchial artery blood flow (Qbr), airflow resistance (RL), and pulmonary and systemic hemodynamics were studied in mechanically ventilated sheep anesthetized with pentobarbital sodium. Histamine increased mean Qbr and RL to 252 +/- 45 and 337 +/- 53% of base line, respectively. This effect was significantly different from base line for 30 min after challenge. The histamine-induced increase in RL was blocked by pretreatment with the histamine H1 receptor antagonist, chlorpheniramine, whereas the histamine-induced elevation in Qbr was prevented by the H2 antagonist, metiamide. Both responses were blocked only when both antagonists were present. Changes in Qbr were not directly associated with alterations in systemic and pulmonary hemodynamics or arterial blood gas composition. In vitro histamine caused a dose-dependent contraction of ovine bronchial artery strips that was prevented by H1 antagonist. The H2 agonist, impromidine, caused relaxation of precontracted arterial strips and was more potent and efficacious than histamine, whereas H1 agonists failed to elicit a relaxant response. Thus these findings indicate that histamine aerosol induces a vasodilation in the bronchial vascular bed; histamine has a direct effect on Qbr that is independent of alterations in RL, systemic and pulmonary hemodynamics, or arterial blood gas composition; and, histamine-induced bronchoconstriction is mediated predominantly by H1-receptors, whereas increased Qbr is controlled predominantly by H2-receptors, probably located in resistance vessels. This local effect of histamine on Qbr may have important implications in the pathophysiology of bronchial asthma and pulmonary edema.  相似文献   

20.
The current study was done to test the hypothesis that protein kinase C (PKC) inhibitors prevent the increase in pulmonary vascular resistance and compliance that occurs in isolated, blood-perfused dog lungs during hypoxia. Pulmonary vascular resistances and compliances were measured with vascular occlusion techniques. Hypoxia significantly increased pulmonary arterial resistance, pulmonary venous resistance, and pulmonary capillary pressure and decreased total vascular compliance by decreasing both microvascular and large-vessel compliances. The nonspecific PKC inhibitor staurosporine (10(-7) M), the specific PKC blocker calphostin C (10(-7) M), and the specific PKC isozyme blocker G?-6976 (10(-7) M) inhibited the effect of hypoxia on pulmonary vascular resistance and compliance. In addition, the PKC activator thymeleatoxin (THX; 10(-7) M) increased pulmonary vascular resistance and compliance in a manner similar to that in hypoxia, and the L-type voltage-dependent Ca(2+) channel blocker nifedipine (10(-6) M) inhibited the response to both THX and hypoxia. These results suggest that PKC inhibition blocks the hypoxic pressor response and that the pharmacological activation of PKC by THX mimics the hypoxic pulmonary vasoconstrictor response. In addition, L-type voltage-dependent Ca(2+) channel blockade may prevent the onset of the hypoxia- and PKC-induced vasoconstrictor response in the canine pulmonary vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号