首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metallocluster extrusion requirements, interspecies MoFe-protein primary sequence comparisons and comparison of the primary sequences of the MoFe-protein subunits with each other have been used to assign potential P-cluster (Fe-S cluster) domains within the MoFe protein. In each alpha-beta unit of the MoFe protein, alpha-subunit domains, which include potential Fe-S cluster ligands Cys-62, His-83, Cys-88 and Cys-154, and beta-subunit domains, which include potential Fe-S cluster ligands Cys-70, His-90, Cys-95 and Cys-153, are proposed to comprise nearly equivalent P-cluster environments located adjacent to each other in the native protein. As an approach to test this model and to probe the functional properties of the P clusters, amino acid residue substitutions were placed at the alpha-subunit Cys-62, His-83, Cys-88 and Cys-154 positions by site-directed mutagenesis of the Azotobacter vinelandii nifD gene. The diazotrophic growth rates, MoFe-protein acetylene-reduction activities, and whole-cell S = 3/2 electron paramagnetic resonance spectra of these mutants were examined. Results of these experiments show that MoFe-protein alpha-subunit residues, Cys-62 and Cys-154, are probably essential for MoFe-protein activity but that His-83 and Cys-88 residues are not. These results indicate either that His-83 and Cys-88 do not provide essential P-cluster ligands or that a new cluster-ligand arrangement is formed in their absence.  相似文献   

2.
Anthranilate synthase is a glutamine amidotransferase that catalyzes the first reaction in tryptophan biosynthesis. Conserved amino acid residues likely to be essential for glutamine-dependent activity were identified by alignment of the glutamine amide transfer domains in four different enzymes: anthranilate synthase component II (AS II), p-aminobenzoate synthase component II, GMP synthetase, and carbamoyl-P synthetase. Conserved amino acids were mainly localized in three clusters. A single conserved histidine, AS II His-170, was replaced by tyrosine using site-directed mutagenesis. Glutamine-dependent enzyme activity was undetectable in the Tyr-170 mutant, whereas the NH3-dependent activity was unchanged. Affinity labeling of AS II active site Cys-84 by 6-diazo-5-oxonorleucine was used to distinguish whether His-170 has a role in formation or in breakdown of the covalent glutaminyl-Cys-84 intermediate. The data favor the interpretation that His-170 functions as a general base to promote glutaminylation of Cys-84. Reversion analysis was consistent with a proposed role of His-170 in catalysis as opposed to a structural function. These experiments demonstrate the application of combining sequence analyses to identify conserved, possibly functional amino acids, site-directed mutagenesis to replace candidate amino acids, and protein chemistry for analysis of mutationally altered proteins, a regimen that can provide new insights into enzyme function.  相似文献   

3.
The ArsAB extrusion pump encoded by the ars operon of Escherichia coli plasmid R773 confers resistance to the toxic trivalent metalloids arsenite [As(III)] and antimonite [Sb(III)]. The ArsA ATPase, the catalytic subunit of the pump, has two homologous halves, A1 and A2. At the interface of these two halves are two nucleotide-binding domains and a metalloid-binding domain. Cys-113 and Cys-422 have been shown to form a high-affinity metalloid binding site. The crystal structure of ArsA shows two other bound metalloid atoms, one liganded to Cys-172 and His-453, and the other liganded to His-148 and Ser-420. The contribution of those putative metalloid sites was examined. There was little effect of mutagenesis of residues His-148 and Ser-420 on metalloid binding. However, a C172A ArsA mutant and C172A/H453A double mutant exhibited significantly decreased affinity for Sb(III). These results suggest first that there is only a single high-affinity metalloid binding site in ArsA, and second that Cys-172 controls the affinity of this site for metalloid and hence the efficiency of metalloactivation of the ArsAB efflux pump.  相似文献   

4.
Human bile acid-CoA:amino acid N-acyltransferase (hBAT), an enzyme catalyzing the conjugation of bile acids with the amino acids glycine or taurine has significant sequence homology with dienelactone hydrolases and other alpha/beta hydrolases. These enzymes have a conserved catalytic triad that maps onto the mammalian BATs at residues Cys-235, Asp-328, and His-362 of the human sequence, albeit that the hydrolases contain a serine instead of a cysteine. In the present study, the function of the putative catalytic triad of hBAT was examined by chemical modification with the cysteine alkylating reagent N-ethylmaleimide (NEM) and by site-directed mutagenesis of the triad residues followed by enzymology studies of mutant and wild-type hBATs. Treatment with NEM caused inactivation of wild-type hBAT. However, preincubation of wild-type hBAT with the substrate cholyl-CoA before NEM treatment prevented loss of N-acyltransferase activity. Substitution of His-362 or Asp-328 with alanine results in inactivation of hBAT. Although substitution of Cys-235 with serine generated an hBAT mutant with lower N-acyltransferase activity, it substantially increased the bile acid-CoA thioesterase activity compared with wild type. In summary, data from this study support the existence of an essential catalytic triad within hBAT consisting of Cys-235, His-362, and Asp-328 with Cys-235 serving as the probable nucleophile and thus the site of covalent attachment of the bile acid molecule.  相似文献   

5.
Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase (APR) catalyzes the first committed step in sulfate reduction for the biosynthesis of cysteine and is essential for survival in the latent phase of tuberculosis infection. The reaction catalyzed by APR involves the nucleophilic attack by conserved Cys-249 on adenosine 5'-phosphosulfate, resulting in a covalent S-sulfocysteine intermediate that is reduced in subsequent steps by thioredoxin to yield the sulfite product. Cys-249 resides on a mobile active site lid at the C terminus, within a K(R/T)ECG(L/I)H motif. Owing to its strict conservation among sulfonucleotide reductases and its proximity to the active site cysteine, it has been suggested that His-252 plays a key role in APR catalysis, specifically as a general base to deprotonate Cys-249. Using site-directed mutagenesis, we have changed His-252 to an alanine residue and analyzed the effect of this mutation on the kinetic parameters, pH rate profile, and ionization of Cys-249 of APR. Interestingly, our data demonstrate that His-252 does not perturb the pK(a) of Cys-249 or play a direct role in rate-limiting chemical steps of the reaction. Rather, we show that His-252 enhances substrate affinity via interaction with the α-phosphate and the endocyclic ribose oxygen. These findings were further supported by isothermal titration calorimetry to provide a thermodynamic profile of ligand-protein interactions. From an applied standpoint, our study suggests that small-molecules targeting residues in the dynamic C-terminal segment, particularly His-252, may lead to inhibitors with improved binding affinity.  相似文献   

6.
7.
We have combined alanine mutagenesis and functional assays to identify amino acid residues in the channel domain that are critical for inositol 1,4,5-trisphosphate receptor (IP3R) channel function. The residues selected were highly conserved in all three IP3R isoforms and were located in the cytosolic end of the S6 pore-lining helix and proximal portion of the C-tail. Two adjacent hydrophobic amino acids (Ile-2588 and Ile-2589) at the putative cytosolic interface of the S6 helix inactivated channel function and could be candidates for the channel gate. Of five negatively charged residues mutated, none completely eliminated channel function. Of five positively charged residues mutated, only one inactivated the channel (Arg-2596). In addition to the previously identified role of a pair of cysteines in the C-tail (Cys-2610 and Cys-2613), a pair of highly conserved histidines (His-2630 and His-2635) were also essential for channel function. Expression of the H2630A and H2635A mutants (but not R2596A) produced receptors with destabilized interactions between the N-terminal fragment and the channel domain. A previously unrecognized association between the cytosolic C-tail and the TM 4,5-loop was demonstrated using GST pulldown assays. However, none of the mutations in the C-tail interfered with this interaction or altered the ability of the C-tail to assemble into dimers. Our present findings and recent information on IP3R structure from electron microscopy and crystallography are incorporated into a revised model of channel gating.  相似文献   

8.
Genetically altered transacylase (E2b) proteins of the bovine branched-chain alpha-keto acid dehydrogenase complex were overexpressed in Escherichia coli and characterized. Deletion by PstI or Bal31 digestion of the amino-terminal region of the inner-core domain (residues 175-421) beyond residue 209 resulted in a complete loss of transacylase activity. The enzyme assay was carried out using [1-14C]isovaleryl-CoA and exogenous dihydrolipoamide as substrates. The removal of 4 residues (Thr-Ile-Pro-Ile) (residues 175-178) from the amino terminus of the inner-core domain significantly reduced the level of transacylase activity. The results establish that the segment between residues 175 and 209 is an integral part of the active site of E2b. The residue His-391 in the recombinant inner-core domain (E2b delta 167) was changed to Asn or Gln by site-directed mutagenesis. The wild-type and the two mutant inner-core domains were assembled into 24-mers as determined by gel filtration. However, both Asn and Gln mutations were accompanied by a complete loss of the enzymatic activity. Titration of the natural branched-chain alpha-keto dehydrogenase complex from pH 8 to 6 sharply reduced transacylase activity. The above data support the hypothesis that a conserved histidine residue in E2 acts as a general base for the transacylation reaction by analogy with E. coli chloramphenicol acetyltransferases.  相似文献   

9.
Site-directed mutagenesis was used to investigate the role of acidic amino acid residues close to the active site of Torpedo acetylcholinesterase. The recently determined atomic structure of this enzyme shows the conserved Glu-327, together with His-440 and Ser-200 as forming a catalytic triad, while the adjacent conserved Asp-326 points away from the active site. Transfection of appropriately mutated DNA into COS cells showed that the mutation of Asp-326----Asn had little effect on catalytic activity or the molecular forms expressed, suggesting no crucial structural or functional role for this residue. Mutation of Glu-327 to Gln or to Asp led to an inactive product. These results support the conclusions of the structural analysis for the two acidic residues.  相似文献   

10.
Cys-29 and Cys-251 of Streptomyces albus valine dehydrogenase (ValDH) were highly conserved in the corresponding region of NAD(P)(+)-dependent amino acid dehydroganase sequences. To ascertain the functional role of these cysteine residues in S. albus ValDH, site-directed mutagenesis was performed to change each of the two residues to serine. Kinetic analyses of the enzymes mutated at Cys-29 and Cys-251 revealed that these residues are involved in catalysis. We also constructed mutant ValDH by substituting valine for leucine at 305 by site-directed mutagenesis. This residue was chosen, because it has been proposed to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). Kinetic analysis of the V305L mutant enzyme revealed that it is involved in the substrate binding site. However it displayed less activity than the wild type enzyme toward all aliphatic and aromatic amino acids tested.  相似文献   

11.
The cytoplasmic C-terminal domain, residues 348-637, and the membrane-bound N-terminal domain, residues 1-347, of EIImtl have been subcloned and expressed in Escherichia coli. The N-terminal domain, IICmtl, contains the mannitol binding site, and the C-terminal domain, IIBAmtl, contains the activity-linked phosphorylation sites, His-554 and Cys-384. Overexpression of the BA domain was achieved by a translational in-frame fusion of the gene with the cro ATG start codon, downstream of the strong PR promoter of phage lambda. The domain has been purified and characterized in in vitro complementation assays. It possessed no mannitol phosphorylation activity itself but was able to restore the phosphoenolpyruvate-dependent phosphorylation activity of two EIImtl phosphorylation site mutants, lacking His-554 or Cys-384. The complementary N-terminal domain was also expressed. Membranes possessing IICmtl were unable to phosphorylate mannitol at the expense of phosphoenolpyruvate. However, when the membranes were combined with the purified C-terminal domain, mannitol phosphorylation activity was restored. Mannitol transport and phosphorylation were also restored in vivo when the two plasmids encoding the N- and C-terminal domains were expressed in the same cell. These data demonstrate the existence of structurally and functionally distinct domains in EIImtl: a cytoplasmic domain with phosphorylating activity and a membrane-bound N-terminal domain which, in the presence of the cytoplasmic domain, is able to actively transport and phosphorylate mannitol. The ability to separate, overproduce, and purify structurally stable, enzymatically active domains opens the way for 3D structural studies as well as complete kinetic analysis of the activities of the individual domains and their interactions.  相似文献   

12.
The murine coronavirus mouse hepatitis virus gene 1 is expressed as a polyprotein, which is cleaved into multiple proteins posttranslationally. One of the proteins is p28, which represents the amino-terminal portion of the polyprotein and is presumably generated by the activity of an autoproteinase domain of the polyprotein (S. C. Baker, C. K. Shieh, L. H. Soe, M.-F. Chang, D. M. Vannier, and M. M. C. Lai, J. Virol. 63:3693-3699, 1989). In this study, the boundaries and the critical amino acid residues of this putative proteinase domain were characterized by deletion analysis and site-directed mutagenesis. Proteinase activity was monitored by examining the generation of p28 during in vitro translation in rabbit reticulocyte lysates. Deletion analysis defined the proteinase domain to be within the sequences encoded from the 3.6- to 4.4-kb region from the 5' end of the genome. A 0.7-kb region between the substrate (p28) and proteinase domain could be deleted without affecting the proteolytic cleavage. However, a larger deletion (1.6 kb) resulted in the loss of proteinase activity, suggesting the importance of spacing sequences between proteinase and substrate. Computer-assisted analysis of the amino acid sequence of the proteinase domain identified potential catalytic cysteine and histidine residues in a stretch of sequence distantly related to papain-like cysteine proteinases. The role of these putative catalytic residues in the proteinase activity was studied by site-specific mutagenesis. Mutations of Cys-1137 or His-1288 led to a complete loss of proteinase activity, implicating these residues as essential for the catalytic activity. In contrast, most mutations of His-1317 or Cys-1172 had no or only minor effects on proteinase activity. This study establishes that mouse hepatitis virus gene 1 encodes a proteinase domain, in the region from 3.6 to 4.4 kb from the 5' end of the genome, which resembles members of the papain family of cysteine proteinases and that this proteinase domain is responsible for the cleavage of the N-terminal peptide.  相似文献   

13.
The structure of YaaE from Bacillus subtilis was determined at 2.5-A resolution. YaaE is a member of the triad glutamine aminotransferase family and functions in a recently identified alternate pathway for the biosynthesis of vitamin B(6). Proposed active residues include conserved Cys-79, His-170, and Glu-172. YaaE shows similarity to HisH, a glutaminase involved in histidine biosynthesis. YaaD associates with YaaE. A homology model of this protein was constructed. YaaD is predicted to be a (beta/alpha)(8) barrel on the basis of sequence comparisons. The predicted active site includes highly conserved residues 211-216 and 233-235. Finally, a homology model of a putative YaaD-YaaE complex was prepared using the structure of HisH-F as a model. This model predicts that the ammonia molecule generated by YaaE is channeled through the center of the YaaD barrel to the putative YaaD active site.  相似文献   

14.
We previously obtained evidence for intrinsic aminopeptidase activity for leukotriene (LT)A4 hydrolase, an enzyme characterized to specifically catalyse the hydrolysis of LTA4 to LTB4, a chemotactic compound. From a sequence homology search between LTA4 hydrolase and several aminopeptidases, it became clear that they share a putative active site for known aminopeptidases and a zinc binding domain. Thus, Glu-297 of LTA4 hydrolase is a candidate for the active site of its aminopeptidase activity, while His-296, His-300 and Glu-319 appear to constitute a zinc binding site. To determine whether or not this putative active site is also essential to LTA4 hydrolase activity, site-directed mutagenesis experiments were carried out. Glu-297 was mutated into 4 different amino acids. The mutant E297Q (Glu changed to Gln) conserved LTA4 hydrolase activity but showed little aminopeptidase activity. Other mutants at Glu-297 (E297A, E297D and E297K) showed markedly reduced amounts of both activities. It is thus proposed that either a glutamic or glutamine moiety at 297 is required for full LTA4 hydrolase activity, while the free carboxylic acid of glutamic acid is essential for aminopeptidase.  相似文献   

15.
Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those catalytic amino acid residues were fairly conserved in ADH-T and other ADHs, ADH-T was inferred to have basically the same proton release system as horse liver ADH. The putative proton release system of ADH-T was elucidated by introducing point mutations at the catalytic amino acid residues, Cys-38 (cysteine at position 38), Thr-40, and His-43, with site-directed mutagenesis. The mutant enzyme Thr-40-Ser (Thr-40 was replaced by serine) showed a little lower level of activity than wild-type ADH-T did. The result indicates that the OH group of serine instead of threonine can also be used for the catalytic activity. To change the pKa value of the putative system, His-43 was replaced by the more basic amino acid arginine. As a result, the optimum pH of the mutant enzyme His-43-Arg was shifted from 7.8 (wild-type enzyme) to 9.0. His-43-Arg exhibited a higher level of activity than wild-type enzyme at the optimum pH.  相似文献   

16.
Carnitine palmitoyltransferase (CPT) I catalyzes the conversion of long-chain fatty acyl-CoAs to acyl carnitines in the presence of l-carnitine, a rate-limiting step in the transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix. To determine the role of the 15 cysteine residues in the heart/skeletal muscle isoform of CPTI (M-CPTI) on catalytic activity and malonyl-CoA sensitivity, we constructed a 6-residue N-terminal, a 9-residue C-terminal, and a 15-residue cysteineless M-CPTI by cysteine-scanning mutagenesis. Both the 9-residue C-terminal mutant enzyme and the complete 15-residue cysteineless mutant enzyme are inactive but that the 6-residue N-terminal cysteineless mutant enzyme had activity and malonyl-CoA sensitivity similar to those of wild-type M-CPTI. Mutation of each of the 9 C-terminal cysteines to alanine or serine identified a single residue, Cys-305, to be important for catalysis. Substitution of Cys-305 with Ala in the wild-type enzyme inactivated M-CPTI, and a single change of Ala-305 to Cys in the 9-residue C-terminal cysteineless mutant resulted in an 8-residue C-terminal cysteineless mutant enzyme that had activity and malonyl-CoA sensitivity similar to those of the wild type, suggesting that Cys-305 is the residue involved in catalysis. Sequence alignments of CPTI with the acyltransferase family of enzymes in the GenBank led to the identification of a putative catalytic triad in CPTI consisting of residues Cys-305, Asp-454, and His-473. Based on the mutagenesis and substrate labeling studies, we propose a mechanism for the acyltransferase activity of CPTI that uses a catalytic triad composed of Cys-305, His-473, and Asp-454 with Cys-305 serving as a probable nucleophile, thus acting as a site for covalent attachment of the acyl molecule and formation of a stable acyl-enzyme intermediate. This would in turn allow carnitine to act as a second nucleophile and complete the acyl transfer reaction.  相似文献   

17.
We have probed the structural/functional relationship of key residues in human placental alkaline phosphatase (PLAP) and compared their properties with those of the corresponding residues in Escherichia coli alkaline phosphatase (ECAP). Mutations were introduced in wild-type PLAP, i.e. [E429]PLAP, and in some instances also in [G429]PLAP, which displays properties characteristic of the human germ cell alkaline phosphatase isozyme. All active site metal ligands, as well as residues in their vicinity, were substituted to alanines or to the homologous residues present in ECAP. We found that mutations at Zn2 or Mg sites had similar effects in PLAP and ECAP but that the environment of the Zn1 ion in PLAP is less affected by substitutions than that in ECAP. Substitutions of the Mg and Zn1 neighboring residues His-317 and His-153 increased k(cat) and increased K(m) when compared with wild-type PLAP, contrary to what was predicted by the reciprocal substitutions in ECAP. All mammalian alkaline phosphatases (APs) have five cysteine residues (Cys-101, Cys-121, Cys-183, Cys-467, and Cys-474) per subunit, not homologous to any of the four cysteines in ECAP. By substituting each PLAP Cys by Ser, we found that disrupting the disulfide bond between Cys-121 and Cys-183 completely prevents the formation of the active enzyme, whereas the carboxyl-terminally located Cys-467-Cys-474 bond plays a lesser structural role. The substitution of the free Cys-101 did not significantly affect the properties of the enzyme. A distinguishing feature found in all mammalian APs, but not in ECAP, is the Tyr-367 residue involved in subunit contact and located close to the active site of the opposite subunit. We studied the A367 and F367 mutants of PLAP, as well as the corresponding double mutants containing G429. The mutations led to a 2-fold decrease in k(cat), a significant decrease in heat stability, and a significant disruption of inhibition by the uncompetitive inhibitors l-Phe and l-Leu. Our mutagenesis data, computer modeling, and docking predictions indicate that this residue contributes to the formation of the hydrophobic pocket that accommodates and stabilizes the side chain of the inhibitor during uncompetitive inhibition of mammalian APs.  相似文献   

18.
Falcipain-2 is one of the principal hemoglobinases of Plasmodium falciparum, a human malaria parasite. It has a typical papain family cysteine protease structural organization, a large pro-domain, a mature domain with conserved active site amino acids. Pro-domain of falcipain-2 also contains two important conserved motifs, "GNFD" and "ERFNIN." The "GNFD" motif has been shown to be responsible for correct folding and stability in case of many papain family proteases. In the present study, we carried out site-directed mutagenesis to assess the roles of active site residues and pro-domain residues for the activity of falcipain-2. Our results showed that substitutions of putative active site residues; Q36, C42, H174, and N204 resulted in complete loss of falcipain-2 activity, while W206 and D155 mutants retained partial/complete activity in comparison to the wild type falcipain-2. Homology modeling data also corroborate the results of mutagenesis; Q36, C42, H174, N204, and W206 residues form the active site loop of the enzyme and D155 lie outside the active pocket. Substitutions in the pro-region did not affect the activity of falcipain-2. This implies that falcipain-2 shares active site residues with other members of papain family, however pro-region of falcipain-2 does not play any role in the activity of enzyme.  相似文献   

19.
Molecular cloning of human endothelial angiotensin I-converting enzyme (kininase II; EC 3.4.15.1) (ACE) has recently shown that the enzyme contains two large homologous domains (called here the N and C domains), each bearing a putative active site, identified by sequence comparisons with the active sites of other zinc metallopeptidases. However, the previous experiments with zinc or competitive ACE inhibitors suggested a single active site in ACE. To establish whether both domains of ACE are enzymatically active, a series of ACE mutants, each containing only one intact domain, were constructed by deletion or point mutations of putative critical residues of the other domain, and expressed in heterologous Chinese hamster ovary cells. Both domains are enzymatically active and cleave the C-terminal dipeptide of hippuryl-His-Leu or angiotensin I. Moreover, both domains have an absolute zinc requirement for activity, are activated by chloride and are sensitive to competitive ACE inhibitors, and appear to function independently. However, the two domains display different catalytic constants and different patterns of chloride activation. At high chloride concentrations, the C domain hydrolyzes the two substrates tested faster than does the N domain. His-361,365 and His-959,963 are established as essential residues in the N and C domains, respectively, most likely involved in zinc binding, and Glu-362 in the N domain and Glu-960 in the C domain are essential catalytic residues. These observations provide strong evidence that ACE possesses two independent catalytic domains and suggest that they may have different functions.  相似文献   

20.
Polyethylene glycol dehydrogenase (PEGDH) from Sphingopyxis terrae (formerly Sphingomonas terrae) is composed of 535 amino acid residues and one flavin adenine dinucleotide per monomer protein in a homodimeric structure. Its amino acid sequence shows 28.5 to 30.5% identity with glucose oxidases from Aspergillus niger and Penicillium amagasakiense. The ADP-binding site and the signature 1 and 2 consensus sequences of glucose-methanol-choline oxidoreductases are present in PEGDH. Based on three-dimensional molecular modeling and kinetic characterization of wild-type PEGDH and mutant PEGDHs constructed by site-directed mutagenesis, residues potentially involved in catalysis and substrate binding were found in the vicinity of the flavin ring. The catalytically important active sites were assigned to His-467 and Asn-511. One disulfide bridge between Cys-379 and Cys-382 existed in PEGDH and seemed to play roles in both substrate binding and electron mediation. The Cys-297 mutant showed decreased activity, suggesting the residue's importance in both substrate binding and electron mediation, as well as Cys-379 and Cys-382. PEGDH also contains a motif of a ubiquinone-binding site, and coenzyme Q10 was utilized as an electron acceptor. Thus, we propose several important amino acid residues involved in the electron transfer pathway from the substrate to ubiquinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号