首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 99-amino acid protein having the deduced sequence of the protease from human immunodeficiency virus type 2 (HIV-2) was synthesized by the solid phase method and tested for specificity. The folded peptide catalyzes specific processing of a recombinant 43-kDa GAG precursor protein (F-16) of HIV-1. Although the protease of HIV-2 shares only 48% amino acid identity with that of HIV-1, the HIV-2 enzyme exhibits the same specificity toward the HIV-1 GAG precursor. Fragments of 34, 32, 24, 10, and 9 kDa were generated from F-16 GAG incubated with the protease. N-terminal amino acid sequence analysis of proteolytic fragments indicate that cleavage sites recognized by HIV-2 protease are identical to those of HIV-1 protease. The verified cleavage sites in F-16 GAG appear to be processed independently, as indicated by the formation of the intermediate fragments P32 and P34 in nearly equal ratios. The site nearest the amino terminus is quite conserved between the two viral GAG proteins (...VSQNY-PIVQN...in HIV-1,...KGGNY-PVQHV...in HIV-2). In contrast, the putative second site (...IPFAA-AQQKG...) of HIV-2 GAG shares minimal sequence identity with site 2 of HIV-1 GAG (...SATIM-MQRGN...). These sequence variations in the substrates suggest higher order structural features that may influence recognition by the proteases. Pepstatin A inhibits HIV-2 protease, whereas 1,10-phenanthroline and phenylmethylsulfonylfluoride do not; these results are in agreement with the finding that proteases of HIV and other retroviruses are aspartyl proteases.  相似文献   

2.
The nonapeptide Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val-Gln has been reported as a model substrate for an aspartyl protease produced by the human immunodeficiency virus (HIV-1). Cleavage of this peptide at the Tyr-Pro linkage to produce tetra- and pentapeptide fragments is the basis of high-performance liquid chromatographic assays to detect HIV-1 protease activity. Confirmation of the cleavage site has been proved by using microbore liquid chromatography coupled to a dynamic fast atom bombardment interface. Comparison with fortified control incubates indicates that an approximate stoichiometric amount of the tetrapeptide was formed from the nonapeptide, confirming that the cleavage of the substrate by HIV-1 protease is both specific and quantitative.  相似文献   

3.
The genetic locus and primary structure of the human immunodeficiency virus (HIV) protease was determined by comparing the data of protein analyses with the published data of the gene analysis. The complete sequence of HIV-1 and HIV-2 protease was synthesized by solid-phase peptide synthesis. The synthetic protease was capable of accurately cleaving synthetic peptide substrates corresponding to known cleavage sites in gag polyproteins of HIV-1, HIV-2, and murine leukemia virus. The chemical synthesis of protease confirms the DNA sequence and provides a means of rapidly producing active protease in substantial quantities for biochemical and physical studies.  相似文献   

4.
Human immunodeficiency virus type 2 (HIV-2) Nef is proteolytically cleaved by the HIV-2-encoded protease. The proteolysis is not influenced by the absence or presence of the N-terminal myristoylation. The main cleavage site is located between residues 39 and 40, suggesting a protease recognition sequence, GGEY-SQFQ. As observed previously for Nef protein from HIV-1, a large, stable core domain with an apparent molecular mass of 30 kDa is produced by the proteolytic activity. Cleavage of Nef from HIV-1 in two domains by its own protease or the protease from HIV-2 is also independent of Nef myristoylation. However, processing of HIV-1 Nef by the HIV-2 protease is less selective than that by the HIV-1 protease: the obtained core fragment is heterogeneous at its N terminus and has an additional cleavage site between amino acids 99 and 100. Preliminary experiments suggest that the full-length Nef of HIV-2 and the core domain are part of the HIV-2 particles, analogous to the situation reported recently for HIV-1.  相似文献   

5.
The specificity of HIV-1 (human immunodeficiency virus-1) protease has been evaluated relative to its ability to cleave the three-domain Pseudomonas exotoxin (PE66) and related proteins in which the first domain has been deleted or replaced by a segment of CD4. Native PE66 is not hydrolyzed by the HIV-1 protease. However, removal of its first domain produces a molecule which is an excellent substrate for the enzyme. The major site of cleavage in this truncated exotoxin, called LysPE40, occurs in a segment that connects its two major domains, the translocation domain (II), and the ADP-ribosyltransferase (III). This interdomain region contains the sequence ...Asn-Tyr-Pro-Thr... which is similar to that surrounding the scissile Tyr-Pro bond in the gag precursor polyprotein, a natural substrate of the HIV-1 protease. Nevertheless, it is not this sequence that is recognized and cleaved by the enzyme, but one 6 residues away, ...Ala-Leu-Leu-Glu... in which the Leu-Leu peptide bond is hydrolyzed. A second, slower cleavage takes place at the Leu-Ala bond 3 residues in from the NH2 terminus of LysPE40. When domain I of PE66 is replaced by a segment comprising the first two domains of CD4, the resulting chimeric protein is hydrolyzed at the same Leu-Leu bond by HIV-1 protease. Enzyme activities toward synthetic peptides modeled after the sequences defined above in LysPE40 are in complete accord, relative to specificity, kinetics, and pH optimum, with results obtained in the hydrolysis of the parent protein. These findings demonstrate that ideas concerning the specificity of the HIV-1 protease that are based solely upon its processing of natural viral polyproteins can be expanded by evaluation of other multidomain proteins as substrates. Moreover, it would appear that it is not a particular conformation, but sequence and accessibility that play the dominant role in defining sites in a protein substrate that are susceptible to hydrolysis by the enzyme.  相似文献   

6.
We have identified three types of cytoskeletal proteins inside human immunodeficiency virus type 1 (HIV-1) virions by analyzing subtilisin-digested particles. HIV-1 virions were digested with protease, and the treated particles were isolated by sucrose density centrifugation. This method removes both exterior viral proteins and proteins associated with microvesicles that contaminate virion preparations. Since the proteins inside the virion are protected from digestion by the viral lipid envelope, they can be isolated and analyzed after treatment. Experiments presented here demonstrated that this procedure removed more than 95% of the protein associated with microvesicles. Proteins in digested HIV-1(MN) particles from infected H9 and CEM(ss) cell lines were analyzed by high-pressure liquid chromatography, protein sequencing, and immunoblotting. The data revealed that three types of cytoskeletal proteins are present in virions at different concentrations relative to the molar level of Gag: actin (approximately 10 to 15%), ezrin and moesin (approximately 2%), and cofilin (approximately 2 to 10%). Our analysis of proteins within virus particles detected proteolytic fragments of alpha-smooth muscle actin and moesin that were cleaved at sites which might be recognized by HIV-1 protease. These cleavage products are not present in microvesicles from uninfected cells. Therefore, these processed proteins are most probably produced by HIV-1 protease digestion. The presence of these fragments, as well as the incorporation of a few specific cytoskeletal proteins into virions, suggests an active interaction between cytoskeletal and viral proteins.  相似文献   

7.
The protease from simian immunodeficiency virus (SIV) was chemically synthesized by automated solid-phase technology as an NH2-terminally extended derivative, capped with biotin. Biotin-linker-(SIV protease (1-99)): the linker segment, Gly-Gly-Asp-Arg-Gly-Phe-Ala-Ala, corresponds to the amino acid sequence preceding that of the protease in the SIV gag/pol precursor polyprotein. Accordingly, the Ala-Pro bond joining the octapeptide linker to the protease constitutes a site naturally cleaved by the protease during viral maturation. This strategy for synthesis was designed to facilitate purification of the biotinylated protein derivative from a complex mixture of reaction products by avidin/agarose-affinity chromatography and to provide the means for autocatalytic removal of the biotin-linker segment. As anticipated, folding of the full-length construct leads to activation of the enzyme and excision of the desired 99-residue SIV protease (overall yield, approximately). The specificity of the synthetic SIV protease toward a number of well characterized protein substrates was the same as observed for the nearly identical enzyme from human immunodeficiency virus type 2 (HIV-2 protease) and distinct from that of the more disparate HIV-1 protease. The same functional ordering with respect to the human retroviral proteases was reflected in Ki values observed with a number of protease inhibitors. Thus, the folded synthetic SIV protease shows patterns of specificity and susceptibility to inhibition that are in accord with what would be expected based upon its degree of structural similarity to proteases from HIV-1 and HIV-2.  相似文献   

8.
The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a virion-associated regulatory protein. Mutagenesis has shown that the virion association of Vpr requires sequences near the C terminus of the HIV-1 Gag polyprotein Pr55gag. To investigate whether Vpr incorporation is mediated by a specific domain of Pr55gag, we examined the ability of chimeric HIV-1/Moloney murine leukemia virus (MLV) Gag polyproteins to direct the incorporation of Vpr. Vpr expressed in trans did not associate with particles formed by the authentic MLV Gag polyprotein or with particles formed by chimeric Gag polyproteins that had the matrix (MA) or capsid (CA) domain of MLV precisely replaced by the corresponding domain of HIV-1HXB2. By contrast, Vpr was efficiently incorporated upon replacement of the C-terminal nucleocapsid (NC) domain of the MLV Gag polyprotein with HIV-1 p15 sequences. Vpr was also efficiently incorporated into particles formed by a MLV Gag polyprotein that had the HIV-1 p6 domain fused to its C terminus. Furthermore, a deletion analysis revealed that a conserved region near the C terminus of the p6 domain is essential for Vpr incorporation, whereas sequences downstream of the conserved region are dispensable. These results show that a virion association motif for Vpr is located within residues 1 to 46 of p6.  相似文献   

9.
10.
11.
Chemical synthesis and expression of the HIV-1 protease gene in E. coli   总被引:3,自引:0,他引:3  
The 297bp HIV-1 protease gene was constructed from five discrete synthetic fragments and expressed in E. coli. A soluble protein product of 11.5 Kd was detected by immunoblotting using protease specific antisera. A quantitative assay system, utilizing a synthetic nonapeptide spanning the cleavage site between p17-p24 in the gag polyprotein, was used to measure the specific protease activity in crude extracts. The protease hydrolyzed tyrosyl-proline bonds with an approximate specific activity of 43 pmoles/min/micrograms of total protein. The chemical synthesis of the protease gene and it's expression provides a feasible method for rapid mutant analysis, important for structure-function studies and rational design of potential inhibitors.  相似文献   

12.
13.
The angiotensin I-based peptide Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Leu-Glu-Glu-Ser yields angiotensin I (Ang I) and Leu-Glu-Glu-Ser upon hydrolysis by the human immunodeficiency virus type 1 (HIV-1) protease, but not by human renin. N-terminal sequencing of the reaction products showed that the HIV-1 protease cleaved exclusively at the Leu-Leu bond. The rate of Ang I formation can be measured by a radioimmunoassay, since the parent peptide has minimal cross reactivity in this assay. The rate of enzymatic hydrolysis is maximal at pH 4.5-5.0 and at an ionic strength of 1 M. At 37 degrees C, 0.1 M Na acetate buffer, pH 5.0, 1 M NaCl, 10% glycerol, 5% ethylene glycol, 1 mg/ml bovine serum albumin, and 3 mM EDTA, the reaction obeys Michaelis-Menten type kinetics with Km = 17.2 +/- 3.5 microM and kcat = 2.30 +/- 0.33 min-1. The activity assay readily quantitates as little as 0.25 nM of HIV-1 protease. The production of Ang I by the HIV-1 protease is inhibited in the presence of a HIV-1 protease inhibitor. The newly discovered substrate is relatively insensitive to human or monkey serum. Therefore, the effect of sera from 20 patients with advanced acquired immunodeficiency disease syndrome (AIDS) on Ang I production in the above assay system was examined. Results of this study indicate that it may be possible to adapt the above Ang I-based system to determine blood levels of HIV-1 protease inhibitors in AIDS patients during clinical trials.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) infection causes apoptosis of infected CD4 T cells as well as uninfected (bystander) CD4 and CD8 T cells. It remains unknown what signals cause infected cells to die. We demonstrate that HIV-1 protease specifically cleaves procaspase 8 to create a novel fragment termed casp8p41, which independently induces apoptosis. casp8p41 is specific to HIV-1 protease-induced death but not other caspase 8-dependent death stimuli. In HIV-1-infected patients, casp8p41 is detected only in CD4(+) T cells, predominantly in the CD27(+) memory subset, its presence increases with increasing viral load, and it colocalizes with both infected and apoptotic cells. These data indicate that casp8p41 independently induces apoptosis and is a specific product of HIV-1 protease which may contribute to death of HIV-1-infected cells.  相似文献   

15.
A synthetic peptide, RPI 312, that specifically inhibits the protease of the human immunodeficiency virus type 1 (HIV-1) showed a potent inhibition on virus production, maturation, and infectivity. Treatment with this agent prevented the cleavage of Gag protein at the site between p17 and p24 in HIV-1 chronically infected MOLT-4 cells as well as in the released virus. Passage of HIV-1 in the presence of gradually increasing concentrations of this protease inhibitor resulted in emergence of a variant that could evade the drug effects. In the resistant variant the maturation of Gag proteins appeared normal, but its infectivity was reduced compared with that of the parent virus. The nucleotides coding the amino acids at and around the cleavage site between Gag proteins p17 and p24 were not changed. One point mutation (A-->G) at site 2082 of the pol gene that resulted in one amino acid change at site 84 of the protease from isoleucine to valine (I-84-->V) could be detected in the resistant variant. An HIV-1 infectious DNA clone with the I-84-->V mutation also showed reduced sensitivity to this protease inhibitor. The findings that the resistant variant had lower infectivity and was still affected by higher doses of the drug support the speculation that resistance to protease inhibitors may not be as problematic as other drug resistance.  相似文献   

16.
The standard angiotensin I (Ang I) radioimmunoassay for renin activity determination is a useful clinical tool for the diagnosis of high renin levels in certain cases of hypertension. It depends upon the liberation of Ang I from human plasma angiotensinogen. We considered whether a commercially available synthetic tetradecapeptide (TDP), Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser, would produce authentic Ang I upon incubation with protease from human immunodeficiency virus type 1 (HIV-1). This peptide is also known to be cleaved by renin at the Leu-Leu bond to yield the decapeptide Ang I. When the TDP is incubated with the HIV-1 protease, the peptide is readily hydrolyzed. Product formation is linear with respect to time and enzyme concentration. HPLC analysis of reaction products showed two new peaks, as one would expect from the cleavage of a TDP into a decapeptide and a tetrapeptide. Amino acid analysis of HPLC-purified peaks confirmed that the HIV-1 protease cleaves TDP at the Leu10-Leu11 site to produce the desired decapeptide, Ang I. Production of Ang I by the HIV-1 protease, like human renin, is inhibited in the presence of a protease inhibitor. Implications of the discovery of an HIV-1 protease substrate that produces authentic Ang I are discussed in light of a screening assay for soluble HIV-1 protease inhibitors.  相似文献   

17.
Abstract Processing of human immunodeficiency virus (HIV) proteins by the HIV-1 protease is essential for HIV infectivity. In addition, several studies have revealed cleavage of human proteins by this viral protease during infection; however, no large-scale HIV-1 protease degradomics study has yet been performed. To identify putative host substrates in an unbiased manner and on a proteome-wide scale, we used positional proteomics to identify peptides reporting protein processing by the HIV-1 protease, and a catalogue of over 120 cellular HIV-1 protease substrates processed in vitro was generated. This catalogue includes previously reported substrates as well as recently described interaction partners of HIV-1 proteins. Cleavage site alignments revealed a specificity profile in good correlation with previous studies, even though the ELLE consensus motif was not cleaved efficiently when incorporated into peptide substrates due to subsite cooperativity. Our results are further discussed in the context of HIV-1 infection and the complex substrate recognition by the viral protease.  相似文献   

18.
The human immunodeficiency virus 1 (HIV-1) protease (PR) is an aspartyl protease essential for HIV-1 viral infectivity. HIV-1 PR has one catalytic site formed by the homodimeric enzyme. We chemically synthesized fully active HIV-1 PR using modern ligation methods. When complexed with the classic substrate-derived inhibitors JG-365 and MVT-101, the synthetic HIV-1 PR formed crystals that diffracted to 1.04- and 1.2-A resolution, respectively. These atomic-resolution structures revealed additional structural details of the HIV-1 PR's interactions with its active site ligands. Heptapeptide inhibitor JG-365, which has a hydroxyethylamine moiety in place of the scissile bond, binds in two equivalent antiparallel orientations within the catalytic groove, whereas the reduced isostere hexapeptide MVT-101 binds in a single orientation. When JG-365 was converted into the natural peptide substrate for molecular dynamic simulations, we found putative catalytically competent reactant states for both lytic water and direct nucleophilic attack mechanisms. Moreover, free energy perturbation calculations indicated that the insertion of catalytic water into the catalytic site is an energetically favorable process.  相似文献   

19.
Various constructs of the human immunodeficiency virus, type 1 (HIV-1) protease containing flanking Pol region sequences were expressed as fusion proteins with the maltose-binding protein of the malE gene of Escherichia coli. The full-length fusion proteins did not exhibit self-processing in E. coli, thereby allowing rapid purification by affinity chromatography on cross-linked amylose columns. Denaturation of the fusion protein in 5 M urea, followed by renaturation, resulted in efficient site-specific autoprocessing to release the 11-kDa protease. Rapid purification involving two column steps gave an HIV-1 protease preparations of greater than 95% purity (specific activity approximately 8500 pmol.min-1.micrograms protease-1) with an overall yield of about 1 mg/l culture. Incubation of an inactive mutant protease fusion protein with the purified wild-type protease resulted in specific trans cleavage and release of the mutant protease. Analysis of products of the HIV-1 fusion proteins containing mutations at either the N- or the C-terminal protease cleavage sites indicated that blocking one of the cleavage sites influences the cleavage at the non-mutated site. Such mutated full-length and truncated protease fusion proteins possess very low levels of proteolytic activity (approximately 5 pmol.min-1.micrograms protein-1).  相似文献   

20.
The Nef protein of human immunodeficiency virus type 1 (HIV-1) promotes virion infectivity through mechanisms that are yet ill defined. Some Nef is incorporated into particles, where it is cleaved by the viral protease between amino acids 57 and 58. The functional significance of this event, which liberates the C-terminal core domain of the protein from its membrane-associated N terminus, is unknown. To address this question, we examined the modalities of Nef virion association and processing. We found that although significant levels of Nef were detected in HIV-1 virions partly in a cleaved form, cell-specific variations existed in the efficiency of Nef proteolytic processing. The virion association of Nef was strongly enhanced by myristoylation but did not require other HIV-1-specific proteins, since Nef was efficiently incorporated into and cleaved inside murine leukemia virus particles. Substituting alanine for tryptophan57 decreased the efficiency of Nef processing, while mutating leucine58 had little effect. In contrast, replacing both of these residues simultaneously almost completely prevented this process. However, when the resulting mutants were compared with a wild-type control in viral infectivity assays, no correlation was found between the levels of cleavage and the ability to stimulate virion infectivity. Furthermore, simian immunodeficiency virus Nef, which lacks the sequence recognized by the protease and as a consequence is not cleaved despite its incorporation into virions, could stimulate the infectivity of a nef-defective HIV-1 variant as efficiently as HIV-1 Nef. On these bases, we conclude that the proteolytic processing of Nef is not required for the ability of this protein to enhance virion infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号