首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparan sulfate proteoglycan plays an important role in developmental processes by modulating the distribution and stability of the morphogens Wingless, Hedgehog, and Decapentaplegic. Heparan and chondroitin sulfates share a common linkage tetrasaccharide structure, GlcAbeta1,3Galbeta1,3Galbeta1,4Xylbeta-O-Ser. In the present study, we identified Drosophila proteoglycan galactosyltransferase II (dbeta3GalTII), determined its substrate specificity, and performed its functional analysis by using RNA interference (RNAi) mutant flies. The enzyme transferred a galactose to Galbeta1,4Xyl-pMph, confirming that it is the Drosophila ortholog of human proteoglycan galactosyltransferase II. Real-time PCR analyses revealed that dbeta3GalTII is expressed in various tissues and throughout development. The dbeta3GalTII RNAi mutant flies showed decreased amounts of heparan sulfate proteoglycans. A genetic interaction of dbeta3GalTII with Drosophila beta1,4-galactoslyltransferase 7 (dbeta4GalT7) or with six genes that encode enzymes contributing to the synthesis of glycosaminoglycans indicated that dbeta3GalTII is involved in heparan sulfate synthesis for wing and eye development. Moreover, dbeta3GalTII knock-down caused a decrease in extracellular Wingless in the wing imaginal disc of the third instar larvae. These results demonstrated that dbeta3GalTII contributes to heparan sulfate proteoglycan synthesis in vitro and in vivo and also modulates Wingless distribution.  相似文献   

2.
Haines N  Irvine KD 《Glycobiology》2005,15(4):335-346
Members of the mammalian beta1,4-galactosyltransferase family are among the best studied glycosyltransferases, but the requirements for all members of this family within an animal have not previously been determined. Here, we describe analysis of two Drosophila genes, beta4GalNAcTA (CG8536) and beta4GalNAcTB (CG14517), that are homologous to mammalian beta1,4-galactosyltransferases. Like their mammalian homologs, these glycosyltransferases use N-acetylglucosamine as an acceptor substrate. However, they transfer N-acetylgalactosamine rather than galactose. This activity, together with amino acid sequence similarity, places them among a group of recently identified invertebrate beta1,4-N-acetylgalactosaminyltransferases. To investigate the biological functions of these genes, null mutations were generated by imprecise excision of a transposable element (beta4GalNAcTA) or by gene-targeted homologous recombination (beta4GalNAcTB). Flies mutant for beta4GalNAcTA are viable and fertile but display behavioral phenotypes suggestive of essential roles for GalNAc-beta1,4-GlcNAc containing glycoconjugates in neuronal and/or muscular function. beta4GalNAcTB mutants are viable and display no evident morphological or behavioral phenotypes. Flies doubly mutant for both genes display only the behavioral phenotypes associated with mutation of beta4GalNAcTA. Thus Drosophila homologs of the mammalian beta4GalT family are essential for neuromuscular physiology or development but are not otherwise required for viability, fertility, or external morphology.  相似文献   

3.
A common terminal structure in glycans from animal glycoproteins and glycolipids is the lactosamine sequence Gal(beta)4GlcNAc-R (LacNAc or LN). An alternative sequence that occurs in vertebrate as well as in invertebrate glycoconjugates is GalNAc(beta)4GlcNAc-R (LacdiNAc or LDN). Whereas genes encoding beta4GalTs responsible for LN synthesis have been reported, the beta4GalNAcT(s) responsible for LDN synthesis has not been identified. Here we report the identification of a gene from Caenorhabditis elegans encoding a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase (Ce(beta)4GalNAcT) that synthesizes the LDN structure. Ce(beta)4GalNAcT is a member of the beta4GalT family, and its cDNA is predicted to encode a 383-amino acid type 2 membrane glycoprotein. A soluble, epitope-tagged recombinant form of Ce(beta)4GalNAcT expressed in CHO-Lec8 cells was active using UDP-GalNAc, but not UDP-Gal, as a donor toward a variety of acceptor substrates containing terminal beta-linked GlcNAc in both N- and O-glycan type structures. The LDN structure of the product was verified by co-chromatography with authentic standards and (1)H NMR spectroscopy. Moreover, Chinese hamster ovary CHO-Lec8 and CHO-Lec2 cells expressing Ce(beta)4GalNAcT acquired LDN determinants on endogenous glycoprotein N-glycans, demonstrating that the enzyme is active in mammalian cells as an authentic beta4GalNAcT. The identification and availability of this novel enzyme should enhance our understanding of the structure and function of LDN-containing glycoconjugates.  相似文献   

4.
Heparan and chondroitin sulfates play essential roles in growth factor signaling during development and share a common linkage tetrasaccharide structure, GlcAbeta1,3Galbeta1,3Galbeta1,4Xylbeta1-O-Ser. In the present study, we identified the Drosophila proteoglycan UDP-galactose:beta-xylose beta1,4-galactosyltransferase I (dbeta4GalTI), and determined its substrate specificity. The enzyme transferred a Gal to the -beta-xylose (Xyl) residue, confirming it to be the Drosophila ortholog of human proteoglycan UDP-galactose:beta-xylose beta1,4-galactosyltransferase I. Then we established UAS-dbeta4GalTI-IR fly lines containing an inverted repeat of dbeta4GalTI ligated to the upstream activating sequence (UAS) promoter, a target of GAL4, and observed the F(1) generation of the cross between the UAS-dbeta4GalTI-IR fly and the Act5C-GAL4 fly. In the F(1), double-stranded RNA of dbeta4GalTI is expressed ubiquitously under the control of a cytoplasmic actin promoter to induce the silencing of the dbeta4GalTI gene. The expression of the target gene was disrupted specifically, and the degree of interference was correlated with phenotype. The lethality among the progeny proved that beta4GalTI is essential for viability. This study is the first to use reverse genetics, RNA interference, to study the Drosophila glycosyltransferase systematically.  相似文献   

5.
Poly-N-acetyllactosamines are attached to N-glycans, O-glycans, and glycolipids and serve as underlying glycans that provide functional oligosaccharides such as sialyl Lewis(X). Poly-N-acetyllactosaminyl repeats are synthesized by the alternate addition of beta1,3-linked GlcNAc and beta1,4-linked Gal by i-extension enzyme (iGnT) and a member of the beta1,4-galactosyltransferase (beta4Gal-T) gene family. In the present study, we first found that poly-N-acetyllactosamines in N-glycans are most efficiently synthesized by beta4Gal-TI and iGnT. We also found that iGnT acts less efficiently on acceptors containing increasing numbers of N-acetyllactosamine repeats, in contrast to beta4Gal-TI, which exhibits no significant change. In O-glycan biosynthesis, N-acetyllactosamine extension of core 4 branches was found to be synthesized most efficiently by iGnT and beta4Gal-TI, in contrast to core 2 branch synthesis, which requires iGnT and beta4Gal-TIV. Poly-N-acetyllactosamine extension of core 4 branches is, however, less efficient than that of N-glycans or core 2 branches. Such inefficiency is apparently due to competition between a donor substrate and acceptor in both galactosylation and N-acetylglucosaminylation, since a core 4-branched acceptor contains both Gal and GlcNAc terminals. These results, taken together, indicate that poly-N-acetyllactosamine synthesis in N-glycans and core 2- and core 4-branched O-glycans is achieved by iGnT and distinct members of the beta4Gal-T gene family. The results also exemplify intricate interactions between acceptors and specific glycosyltransferases, which play important roles in how poly-N-acetyllactosamines are synthesized in different acceptor molecules.  相似文献   

6.
Drosophila melanogaster has two β4-N-acetylgalactosaminyltransferases, β4GalNAcTA and β4GalNAcTB, that are able to catalyse the formation of lacdiNAc (GalNAcβ,4GlcNAc). LacdiNAc is found as a structural element of Drosophila glycosphingolipids (GSLs) suggesting that β4GalNAcTs contribute to the generation of GSL structures in vivo. Mutations in Egghead and Brainaic, enzymes that generate the β4GalNAcT trisaccharide acceptor structure GlcNAcβ,3Manβ,4GlcβCer, are lethal. In contrast, flies doubly mutant for the β4GalNAcTs are viable and fertile. Here, we describe the structural analysis of the GSLs in β4GalNAcT mutants and find that in double mutant flies no lacdiNAc structure is generated and the trisaccharide GlcNAcβ,3Manβ,4GlcβCer accumulates. We also find that phosphoethanolamine transfer to GlcNAc in the trisaccharide does not occur, demonstrating that this step is dependent on prior or simultaneous transfer of GalNAc. By comparing GSL structures generated in the β4GalNAcT single mutants we show that β4GalNAcTB is the major enzyme for the overall GSL biosynthesis in adult flies. In β4GalNAcTA mutants, composition of GSL structures is indistinguishable from wild-type animals. However, in β4GalNAcTB mutants precursor structures are accumulating in different steps of GSL biosynthesis, without the complete loss of lacdiNAc, indicating that β4GalNAcTA plays a minor role in generating GSL structures. Together our results demonstrate that both β4GalNAcTs are able to generate lacdiNAc structures in Drosophila GSL, although with different contributions in vivo, and that the trisaccharide GlcNAcβ,3Manβ,4GlcβCer is sufficient to avoid the major phenotypic consequences associated with the GSL biosynthetic defects in Brainiac or Egghead.  相似文献   

7.
8.
9.
The major O-linked oligosaccharide structures attached to human glycophorin A (GPA) have been extensively characterized previously. Our own recent findings, obtained by immunochemical methods, suggested the presence of blood group A and B determinants in O-glycans of human glycophorin originating from blood group A or B erythrocytes, respectively. Here, we elucidate the structure of O-glycans, isolated from GPA of blood group A, B, and O individuals by reductive beta-elimination, carrying A, B or H blood group epitopes, respectively. Structural studies based on nanoflow electrospray-ionization tandem mass spectrometry and earlier reported data on the carbohydrate moiety of GPA and ABH antigens allowed us to conclude that these blood group epitopes are elongations of the beta-GlcNAc branch attached to C-6 of the reducing GalNAc. The galactose linked to C-3 of the reducing GalNAc carries NeuAcalpha2-3 linked residue. Identified here O-glycans were found in low amounts, their content estimated at about one percent of all GPA O-glycans. These O-glycans with type-2 core, carrying the blood group A, B or H determinants, have not been identified in GPA so far. Our results demonstrate the efficacy of nanoESI MS/MS in detecting minor oligosaccharide components present in a mixture with much more abundant structures.  相似文献   

10.
N-Glycans from glycoproteins of the worm stage of the human parasite Schistosoma mansoni were enzymatically released, fluorescently labelled and analysed using various mass spectrometric and chromatographic methods. A family of 28 mainly core-alpha1-6-fucosylated, diantennary N-glycans of composition Hex(3-4)HexNAc(6-12)Fuc(1-6) was found to carry dimers of N,N'-diacetyllactosediamine [LacdiNAc or LDN; GalNAc(beta1-4)GlcNAc(beta1-] with or without fucose alpha1-3-linked to the N-acetylglucosamine residues in the antennae {GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-3)GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-}. To date, oligomeric LDN and oligomeric fucosylated LDN (LDNF) have been found only on N-glycans from mammalian cells engineered to express Caenorhabditis elegansbeta4-GalNAc transferase and human alpha3-fucosyltransferase IX [Z. S. Kawar et al. (2005) J Biol Chem280, 12810-12819]. It now appears that LDN(F) repeats can also occur in a natural system such as the schistosome parasite. Like monomeric LDN and LDNF, the dimeric LDN(F) moieties found here are expected to be targets of humoral and cellular immune responses during schistosome infection.  相似文献   

11.
Haines N  Stewart BA 《Genetics》2007,175(2):671-679
Adult Drosophila mutant for the glycosyltransferase beta1,4-N-acetlygalactosaminyltransferase-A (beta4GalNAcTA) display an abnormal locomotion phenotype, indicating a role for this enzyme, and the glycan structures that it generates, in the neuromuscular system. To investigate the functional role of this enzyme in more detail, we turned to the accessible larval neuromuscular system and report here that larvae mutant for beta4GalNAcTA display distinct nerve and muscle phenotypes. Mutant larvae exhibit abnormal backward crawling, reductions in nerve terminal bouton number, decreased spontaneous transmitter-release frequency, and short, wide muscles. This muscle shape change appears to result from hypercontraction since the individual sarcomeres are shorter in mutant muscles. Analysis of muscle calcium signals showed altered calcium handling in the mutant, suggesting a mechanism by which hypercontraction could occur. All of these phenotypes can be rescued by a transgene carrying the beta4GalNAcTA genomic region. Tissue-specific expression, using the Gal4-UAS system, reveals that neural expression rescues the mutant crawling phenotype, while muscle expression rescues the muscle defect. Tissue-specific expression did not appear to rescue the decrease in neuromuscular junction bouton number, suggesting that this defect arises from cooperation between nerve and muscle. Altogether, these results suggest that beta4GalNAcTA has at least three distinct functional roles.  相似文献   

12.
Heterophile, Hanganutziu-Deicher (HD) antigen-active N-glycolylneuraminic acid-containing glycosphingolipids (GSLs) were detected as tumor-associated foreign antigens of a Marek's disease lymphoma-derived cell line, MSB1, by enzyme-immunoassay with chicken antibody against N-glycolylneuraminyl-lactosylceramide (anti-NeuGc-LacCer). At least three species of HD antigen-active GSLs were detected by two-dimensional thin-layer chromatography (TLC) combined with enzyme-immunoassay. The reactivities of the GSLs with anti-NeuGc-LacCer, their behaviors on two-dimensional TLC and the results of an endo-beta-galactosidase digestion study indicated that these three GSLs were NeuGc-LacCer (NeuGc alpha 2-2Gal beta 1-4Glc-Cer), NeuGc-nLcOse4Cer (NeuGc alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) and NeuGc-nLcOse6Cer (NeuGc alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer).  相似文献   

13.
Poly-N-acetyllactosamine extension has been found in O-glycans in addition to N-glycans and glycosphingolipids. Attempts were made in HL-60 and K562 cells to determine the amount of poly-N-acetyllactosaminyl O-glycans in the major sialoglycoprotein, leukosialin. Leukosialin was immunoprecipitated from [3H]glucosamine-labeled HL-60 and K562 cells. Glycopeptides were prepared by Pronase digestion, and O-glycan-containing glycopeptides were isolated by affinity chromatography using Jacalin-agarose. The glycopeptides bound to Jacalin-agarose and those unbound were treated with alkaline borohydride, and the released O-glycans were fractionated by Bio-Gel P-4 filtration. Sequential glycosidase digestion of the O-glycans, with or without pretreatment by fucosidase or neuraminidase, revealed the following conclusions. 1) Leukosialin from HL-60 cells contains about 1-2 poly-N-acetyllactosaminyl O-glycan chains/molecule. 2) About 50% of these poly-N-acetyllactosaminyl O-glycans contain sialyl Le(x) termini, NeuNAc alpha 2-->3Gal beta 1-->4 (Fuc alpha 1-->3)GlcNAc beta 1-->R. The amount of sialyl Le(x) structure in leukosialin is roughly equivalent to that on cell surfaces of HL-60 cells. 3) Leukosialin from K562 cells, on the other hand, contains no detectable amount of poly-N-acetyllactosaminyl O-glycans. 4) The presence of poly-N-acetyllactosamine in O-glycans is dependent on the core 2 beta 1,6-N-acetylglucosaminyl transferase. 5) Jacalin-agarose binds to sialylated small oligosaccharides such as NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->6) GalNAc but not the hexasaccharide NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->6) GalNAc. These results indicate that the formation of polylactosaminyl O-glycans and sialyl Le(x) structure in O-glycans is dependent on the core 2 formation.  相似文献   

14.
The binding to concanavalin A (Con A) by pyridylaminated oligosaccharides derived from bromelain (Man alpha 1,6(Xyl beta 1, 2) Man beta 1, 4GlcNAc beta 1, 4(Fuc alpha 1, 3)GlcNAc), horseradish peroxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1, 3) GlcNAc), bee venom phospholipase A2 (Man alpha 1,6Man beta 1,4GlcNAc beta 1,4GlcNAc and Man alpha 1,6(Man alpha 1, 3)Man beta 1,4GlcNAc beta 1, 4 (Fuc alpha 1, 3)GlcNAc) and zucchini ascorbate oxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4 GlcNAc beta 1, 4GlcNAc) was compared to the binding by Man3GlcNAc2, Man5GlcNAc2 and the asialo-triantennary complex oligosaccharide from bovine fetuin. While the fetuin oligosaccharide did not bind, bromelain, zucchini, Man2GlcNAc2 and horseradish peroxidase were retarded (in that order). The alpha 1, 3-fucosylated phospholipase, Man3GlcNAc2 and Man5GlcNAc2 structures were eluted with 15 M alpha -methylmannoside. It is concluded that core alpha 1,3-fucosylation has little or no effect on ConA binding while xylosylation decreases affinity for ConA. In a parallel study comparing the endoglycosidase D (Endo D) sensitivities of Man3GlcNAc2, IgG-derived GlcNAc beta 1, 2Man alpha 1,6(GlcNAc beta 1,2Man alpha 1,3)Man beta 1,4GlcNAc beta 1,4(Fuc alpha 1,6)GlcNAc, the phospholipase Man alpha 1,6(Man alpha 1, 3)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1,3)GlcNAc, and horseradish and zucchini pyridylaminated N-linked oligosaccharides, it was found that only the Man3GlcNAc2 structure was cleaved. The IgG structure was sensitive only when beta -hexosaminidase was also present. Thus, in contrast to core alpha 1,6-fucosylated structures, such as those present in mammals, the presence of core alpha 1,3-fucose, as found in structures from plants and insects, and/or beta 1,2-xylose, as found in plants, causes resistance to Endo D.  相似文献   

15.
Glycans containing the GalNAcbeta1-4GlcNAc (LacdiNAc or LDN) motif are expressed by many invertebrates, but this motif also occurs in vertebrates and is found on several mammalian glycoprotein hormones. This motif contrasts with the more commonly occurring Galbeta1-4GlcNAc (LacNAc or LN) motif. To better understand LDN biosynthesis and regulation, we stably expressed the cDNA encoding the Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase (GalNAcT), which generates LDN in vitro, in Chinese hamster ovary (CHO) Lec8 cells, to establish L8-GalNAcT CHO cells. The glycan structures from these cells were determined by mass spectrometry and linkage analysis. The L8-GalNAcT cell line produces complex-type N-glycans quantitatively bearing LDN structures on their antennae. Unexpectedly, most of these complex-type N-glycans contain novel "poly-LDN" structures consisting of repeating LDN motifs (-3GalNAcbeta1-4GlcNAcbeta1-)n. These novel structures are in contrast to the well known poly-LN structures consisting of repeating LN motifs (-3Galbeta1-4GlcNAcbeta1-)n. We also stably expressed human alpha1,3-fucosyltransferase IX in the L8-GalNAcT cells to establish a new cell line, L8-GalNAcT-FucT. These cells produce complex-type N-glycans with alpha1,3-fucosylated LDN (LDNF) GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-R as well as novel "poly-LDNF" structures (-3GalNAcbeta1-4(Fucalpha 1-3)GlcNAcbeta1-)n. The ability of these cell lines to generate glycoprotein hormones with LDN-containing N-glycans was studied by expressing a recombinant form of the common alpha-subunit in L8-GalNAcT cells. The alpha-subunit N-glycans carried LDN structures, which were further modified by co-expression of the human GalNAc 4-sulfotransferase I, which generates SO4-4GalNAcbeta1-4GlcNAc-R. Thus, the generation of these stable mammalian cells will facilitate future studies on the biological activities and properties of LDN-related structures in glycoproteins.  相似文献   

16.
Although Gal beta 1-4GlcNAc (LacNAc) moieties are the most common constituents of N-linked glycans on vertebrate proteins, GalNAc beta 1-4GlcNAc (LacdiNAc, LDN)-containing glycans are widespread in invertebrates, such as helminths. We postulated that LDN might be a molecular pattern for recognition of helminth parasites by the immune system. Using LDN-based affinity chromatography and mass spectrometry, we have identified galectin-3 as the major LDN-binding protein in macrophages. By contrast, LDN binding was not observed with galectin-1. Surface plasmon resonance (SPR) analysis and a solid phase binding assay demonstrated that galectin-3 binds directly to neoglycoconjugates carrying LDN glycans. In addition, galectin-3 bound to Schistosoma mansoni soluble egg Ags and a mAb against the LDN glycan inhibited this binding, suggesting that LDN glycans within S. mansoni soluble egg Ags contribute to galectin-3 binding. Immunocytochemistry demonstrated high levels of galectin-3 in liver granulomas of S. mansoni-infected hamsters, and a colocalization of galectin-3 and LDN glycans was observed on the parasite eggshells. Finally, we demonstrate that galectin-3 can mediate recognition and phagocytosis of LDN-coated particles by macrophages. These findings provide evidence that LDN-glycans constitute a parasite pattern for galectin-3-mediated immune recognition.  相似文献   

17.
The aim of this work was the characterization of the glycoconjugates of the premeiotic spermatogenetic cells of the testis of an urodele amphibian, Pleurodeles waltl, by means of lectins in combination with several chemical and enzymatic procedures, in order to establish the distribution of N- and O-linked oligosaccharides in these cells. In the cytoplasm of the primordial germ cells, primary and secondary spermatogonia and primary spermatocytes, a granular structure can be observed close to the nucleus. These granules contain four types of sugar chains according to their appearance during the differentiation process: 1. some oligosaccharides that are identified in all the four cell types above mentioned, which include N-linked oligosaccharides with Fuc, Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc and O-linked oligosaccharides with Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc; 2. other glycan chains that are not present in the primary spermatocytes (N-linked oligosaccharides with DBA-positive GalNAc, GlcNAc, and a slight amount of Neu5Ac alpha2,6Gal/GalNAc and O-linked oligosaccharides with WGA-positive GlcNAc); 3. the sugar chains that are not in the earliest step of spermatogenesis (formed by both N-linked and O-linked oligosaccharides with Glc); and 4. other that appear at the earliest and latest stages, but not in the intermediate ones, (N-linked oligosaccharides with Man and O-linked oligosaccharides with SBA- and HPA-positive GalNAc and PNA-positive Gal beta1,3GalNAc). This structure could be related with the Drosophila spectrosome and fusome, unusual cytoplasmic organelles implicated in cystic germ cell development. Data from the present work, as compared with those from mammals and other vertebrates, suggest that, although no dramatic changes in the glycosylation pattern are observed, some cell glycoconjugates are modified in a predetermined way during the early steps of the spermatogenetic differentiation process.  相似文献   

18.
Glycoproteins from the ruminant helminthic parasite Haemonchus contortus react with Lotus tetragonolobus agglutinin and Wisteria floribunda agglutinin, which are plant lectins that recognize α1,3-fucosylated GlcNAc and terminal β-GalNAc residues, respectively. However, parasite glycoconjugates are not reactive with Ricinus communis agglutinin, which binds to terminal β-Gal, and the glycoconjugates lack the Lewis x (Lex) antigen or other related fucose-containing antigens, such as sialylated Lex, Lea, Leb Ley, or H-type 1. Direct assays of parasite extracts demonstrate the presence of an α1,3-fucosyltransferase (α1,3FT) and β1,4-N-acetylgalactosaminyltransferase (β1,4GalNAcT), but not β1,4-galactosyltransferase. The H. contortus α1,3FT can fucosylate GlcNAc residues in both lacto-N-neotetraose (LNnT) Galα1→4GlcNAcβ1→3Galβ1→4Glc to form lacto-N-fucopentaose III Galβ1→ 4[Fucα1→3]GlcNAcβ1→3Galβ1→4Glc, which contains the Lex antigen, and the acceptor lacdiNAc (LDN) GalNAcβ1→4GlcNAc to form GalNAcβ1→4[Fucα1 →3]GlcNAc. The α1,3FT activity towards LNnT is dependent on time, protein, and GDP-Fuc concentration with a Km 50 μ M and a Vmax of 10.8 nmol-mg?1 h?1. The enzyme is unusually resistant to inhibition by the sulfhydryl-modifying reagent N-ethylmaleimide. The α1,3FT acts best with type-2 glycan acceptors (Galβ1→4GlcNAcβ1-R) and can use both sialylated and non-sialylated acceptors. Thus, although in vitro the H. contortus α1,3FT can synthesize the Lex antigen, in vivo the enzyme may instead participate in synthesis of fucosylated LDN or related structures, as found in other helminths.  相似文献   

19.
beta-1,4-Galactosyltransferase-I (beta4Gal-T1) transfers galactose from UDP-galactose to N-acetylglucosamine (GlcNAc) residues of the branched N-linked oligosaccharide chains of glycoproteins. In an N-linked biantennary oligosaccharide chain, one antenna is attached to the 3-hydroxyl-(1,3-arm), and the other to the 6-hydroxyl-(1,6-arm) group of mannose, which is beta-1,4-linked to an N-linked chitobiose, attached to the aspargine residue of a protein. For a better understanding of the branch specificity of beta4Gal-T1 towards the GlcNAc residues of N-glycans, we have carried out kinetic and crystallographic studies with the wild-type human beta4Gal-T1 (h-beta4Gal-T1) and the mutant Met340His-beta4Gal-T1 (h-M340H-beta4Gal-T1) in complex with a GlcNAc-containing pentasaccharide and several GlcNAc-containing trisaccharides present in N-glycans. The oligosaccharides used were: pentasaccharide GlcNAcbeta1,2-Manalpha1,6 (GlcNAcbeta1,2-Manalpha1,3)Man; the 1,6-arm trisaccharide, GlcNAcbeta1,2-Manalpha1,6-Manbeta-OR (1,2-1,6-arm); the 1,3-arm trisaccharides, GlcNAcbeta1,2-Manalpha1,3-Manbeta-OR (1,2-1,3-arm) and GlcNAcbeta1,4-Manalpha1,3-Manbeta-OR (1,4-1,3-arm); and the trisaccharide GlcNAcbeta1,4-GlcNAcbeta1,4-GlcNAc (chitotriose). With the wild-type h-beta4Gal-T1, the K(m) of 1,2-1,6-arm is approximately tenfold lower than for 1,2-1,3-arm and 1,4-1,3-arm, and 22-fold lower than for chitotriose. Crystal structures of h-M340H-beta4Gal-T1 in complex with the pentasaccharide and various trisaccharides at 1.9-2.0A resolution showed that beta4Gal-T1 is in a closed conformation with the oligosaccharide bound to the enzyme, and the 1,2-1,6-arm trisaccharide makes the maximum number of interactions with the enzyme, which is in concurrence with the lowest K(m) for the trisaccharide. Present studies suggest that beta4Gal-T1 interacts preferentially with the 1,2-1,6-arm trisaccharide rather than with the 1,2-1,3-arm or 1,4-1,3-arm of a bi- or tri-antennary oligosaccharide chain of N-glycan.  相似文献   

20.
Four radiolabeled pentasaccharides, GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4GlcNAc, Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc, GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4Glc, and Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc, were prepared in virtually pure form. They were obtained by partial enzymic beta 1,4-galactosylations of the appropriate tetrasaccharide acceptors or by partial enzymic degalactosylations of the appropriate hexasaccharides, followed by paper chromatographic separations. All four pentasaccharides contain two nonidentical distal branches, making them valuable primers for enzymatic in vitro synthesis of larger oligo(N-acetyllactosaminoglycans).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号