共查询到20条相似文献,搜索用时 15 毫秒
1.
Even though the reed, Phragmites australis, is an extensively studied wetland species, little is known about reproduction and dispersal modes within and among reed populations at the scale of small river systems. Using microsatellite analysis of 189 individuals from three adjacent river catchments in the Czech Republic, we elucidated the role of the river corridors in the dispersal of P. australis. Using Bayesian clustering of individuals, we found that 19% of clusters were distributed only along one river, which implied dispersal by water (or by wind) along river corridors, whereas 38% of clusters were widely distributed and were likely the product of wind long-distance dispersal among rivers. Intensive exchange of propagules among river systems is further demonstrated by only 6% of total variance being attributed to the variance among rivers in the AMOVA-analysis. Spatial autocorrelation analysis revealed a decreasing pattern up to 5–10 km and no clear pattern over longer distances. This gives an evidence for pollen and seed dispersal at short distances (up to 1 km), whereas most likely only seed dispersal at longer distances up to 10 km. We found five multilocus genotypes distributed in two different populations. The distances between populations with the same genotype ranged from 0.5 to 10.8 km. This can be interpreted as long-distance vegetative dispersal. 相似文献
2.
3.
The local resource competition hypothesis and the local mate competition hypothesis were developed based on avian and mammalian systems to explain sex-biased dispersal. Most avian species show a female bias in dispersal, ostensibly due to resource defence, and most mammals show a male bias, ostensibly due to male-male competition. These findings confound phylogeny with mating strategy; little is known about sex-biased dispersal in other taxa. Resource defence and male-male competition are both intense in Plethodon cinereus, a direct-developing salamander, so we tested whether sex-biased dispersal in this amphibian is consistent with the local resource competition hypothesis (female-biased) or the local mate competition hypothesis (male-biased). Using fine-scale genetic spatial autocorrelation analyses, we found that females were philopatric, showing significant positive genetic structure in the shortest distance classes, with stronger patterns apparent when only territorial females were tested. Males showed no spatial genetic structure over the shortest distances. Mark-recapture observations of P. cinereus over 5 years were consistent with the genetic data: males dispersed farther than females during natal dispersal and 44% of females were recaptured within 1 m of their juvenile locations. We conclude that, in this population of a direct-developing amphibian, females are philopatric and dispersal is male-biased, consistent with the local mate competition hypothesis. 相似文献
4.
Plant dispersal, neighbourhood size and isolation by distance 总被引:1,自引:0,他引:1
Epperson BK 《Molecular ecology》2007,16(18):3854-3865
A theoretical relationship between isolation by distance or spatial genetic structure (SGS) and seed and pollen dispersal is tested using extensive spatial-temporal simulations. Although for animals Wright's neighbourhood size N(e) = 4pisigma(2)(t) has been ascertained also, where sigma(2)(t) is the axial variance of distances between parents and offspring, and it was recently confirmed that N(e) = 4pi(sigma(2)(f) + sigma(2)(m))/2 when dispersal of females and males differ, the situation for plants had not been established. This article shows that for a very wide range of conditions, neighbourhood size defined by Crawford's formula N(e) = 4pi(sigma(2)(s) + sigma(2)(p)/2) fully determines SGS, even when dispersal variances of seed (sigma(2)(s)) and pollen sigma(2)(p)) differ strongly. Further, self-fertilization with rate s acts as zero-distance pollen dispersal, and N(e) = 4pi[sigma(2)(s) + sigma(2)(p)(1 - s)/2] fully determines SGS, for most cases where there are both likely parameter values and substantial SGS. Moreover, for most cases, there is a loglinear relationship, I(1) = 0.587 - 0.117 ln(N(e)), between SGS, as measured by I(1), Moran's coefficient for adjacent individuals, and N(e). However, there are several biologically significant exceptions, namely for very low or large N(e), SGS exceeds the loglinear values. There are also important exceptions to Crawford's formula. First, plants with low seed dispersal, high outcross pollen dispersal and high selfing rate show larger SGS than predicted. Second, in plants with very low (near zero) seed dispersal, selfing decreases SGS, opposite expectations. Finally, in some cases seed dispersal is more critical than pollen dispersal, in a manner inconsistent with Crawford's formula. 相似文献
5.
6.
In the face of widespread deforestation, the conservation of rainforest trees relies increasingly on their ability to maintain reproductive processes in fragmented landscapes. Here, we analysed nine microsatellite loci for 218 adults and 325 progeny of the tree Dipteryx panamensis in Costa Rica. Pollen dispersal distances, genetic diversity, genetic structure and spatial autocorrelation were determined for populations in four habitats: continuous forest, forest fragments, pastures adjacent to fragments and isolated pastures. We predicted longer but less frequent pollen movements among increasingly isolated trees. This pattern would lead to lower outcrossing rates for pasture trees, as well as lower genetic diversity and increased structure and spatial autocorrelation among their progeny. Results generally followed these expectations, with the shortest pollen dispersal among continuous forest trees (240 m), moderate distances for fragment (343 m) and adjacent pasture (317 m) populations, and distances of up to 2.3 km in isolated pastures (mean: 557 m). Variance around pollen dispersal estimates also increased with fragmentation, suggesting altered pollination conditions. Outcrossing rates were lower for pasture trees and we found greater spatial autocorrelation and genetic structure among their progeny, as well as a trend towards lower heterozygosity. Paternal reproductive dominance, the pollen contributions from individual fathers, did not vary among habitats, but we did document asymmetric pollen flow between pasture and adjacent fragment populations. We conclude that long-distance pollen dispersal helps maintain gene flow for D. panamensis in this fragmented landscape, but pasture and isolated pasture populations are still at risk of long-term genetic erosion. 相似文献
7.
Genetic diversity within and between European pig breeds using microsatellite markers 总被引:5,自引:0,他引:5
SanCristobal M Chevalet C Haley CS Joosten R Rattink AP Harlizius B Groenen MA Amigues Y Boscher MY Russell G Law A Davoli R Russo V Désautés C Alderson L Fimland E Bagga M Delgado JV Vega-Pla JL Martinez AM Ramos M Glodek P Meyer JN Gandini GC Matassino D Plastow GS Siggens KW Laval G Archibald AL Milan D Hammond K Cardellino R 《Animal genetics》2006,37(3):189-198
8.
Sex-biased dispersal is expected to generate differences in the fine-scale genetic structure of males and females. Therefore, spatial analyses of multilocus genotypes may offer a powerful approach for detecting sex-biased dispersal in natural populations. However, the effects of sex-biased dispersal on fine-scale genetic structure have not been explored. We used simulations and multilocus spatial autocorrelation analysis to investigate how sex-biased dispersal influences fine-scale genetic structure. We evaluated three statistical tests for detecting sex-biased dispersal: bootstrap confidence intervals about autocorrelation r values and recently developed heterogeneity tests at the distance class and whole correlogram levels. Even modest sex bias in dispersal resulted in significantly different fine-scale spatial autocorrelation patterns between the sexes. This was particularly evident when dispersal was strongly restricted in the less-dispersing sex (mean distance <200 m), when differences between the sexes were readily detected over short distances. All tests had high power to detect sex-biased dispersal with large sample sizes (n ≥ 250). However, there was variation in type I error rates among the tests, for which we offer specific recommendations. We found congruence between simulation predictions and empirical data from the agile antechinus, a species that exhibits male-biased dispersal, confirming the power of individual-based genetic analysis to provide insights into asymmetries in male and female dispersal. Our key recommendations for using multilocus spatial autocorrelation analyses to test for sex-biased dispersal are: (i) maximize sample size, not locus number; (ii) concentrate sampling within the scale of positive structure; (iii) evaluate several distance class sizes; (iv) use appropriate methods when combining data from multiple populations; (v) compare the appropriate groups of individuals. 相似文献
9.
Dispersal is an important life-history trait, but it is notoriously difficult to study. The most powerful approach is to attack the problem with multiple independent sources of data. We integrated information from a 14-year demographic study with molecular data from five polymorphic microsatellite loci to test the prediction of male-biased dispersal in a common elapid species from eastern Australia, the small-eyed snake Rhinoplocephalus nigrescens. These snakes have a polygynous mating system in which males fight for access to females. Our demographic data demonstrate that males move farther than females (about twice as far on average, and about three times for maximum distances). This sex bias in adult dispersal was evident also in the genetic data, which showed a strong and significant genetic signature of male-biased dispersal. Together, the genetic and demographic data suggest that gene flow is largely mediated by males in this species. 相似文献
10.
Comparative analyses of spatial genetic structure (SGS) among species, populations, or cohorts give insight into the genetic consequences of seed dispersal in plants. We analysed SGS of a weedy tree in populations with known and unknown recruitment histories to first establish patterns in populations with single vs. multiple founders, and then to infer possible recruitment scenarios in populations with unknown histories. We analysed SGS in six populations of the colonizing tree Albizia julibrissin Durazz. (Fabaceae) in Athens, Georgia. Study sites included two large populations with multiple, known founders, two small populations with a single, known founder, and two large populations with unknown recruitment histories. Eleven allozyme loci were used to genotype 1385 individuals. Insights about the effects of colonization history from the SGS analyses were obtained from correlograms and Sp statistics. Distinct differences in patterns of SGS were identified between populations with multiple founders vs. a single founder. We observed significant, positive SGS, which decayed with increasing distance in the populations with multiple colonists, but little to no SGS in populations founded by one colonist. Because relatedness among individuals is estimated relative to a local reference population, which usually consists of those individuals sampled in the study population, SGS in populations with high background relatedness, such as those with a single founder, may be obscured. We performed additional analyses using a regional reference population and, in populations with a single founder, detected significant, positive SGS at all distances, indicating that these populations consist of highly related descendants and receive little seed immigration. Subsequent analyses of SGS in size cohorts in the four large study populations showed significant SGS in both juveniles and adults, probably because of a relative lack of intraspecific demographic thinning. SGS in populations of this colonizing tree is pronounced and persistent and is determined by the number and relatedness of founding individuals and adjacent seed sources. Patterns of SGS in populations with known histories may be used to indirectly infer possible colonization scenarios for populations where it is unknown. 相似文献
11.
12.
Coulon A Fitzpatrick JW Bowman R Stith BM Makarewich CA Stenzler LM Lovette IJ 《Molecular ecology》2008,17(7):1685-1701
The delimitation of populations, defined as groups of individuals linked by gene flow, is possible by the analysis of genetic markers and also by spatial models based on dispersal probabilities across a landscape. We combined these two complimentary methods to define the spatial pattern of genetic structure among remaining populations of the threatened Florida scrub-jay, a species for which dispersal ability is unusually well-characterized. The range-wide population was intensively censused in the 1990s, and a metapopulation model defined population boundaries based on predicted dispersal-mediated demographic connectivity. We subjected genotypes from more than 1000 individual jays screened at 20 microsatellite loci to two Bayesian clustering methods. We describe a consensus method for identifying common features across many replicated clustering runs. Ten genetically differentiated groups exist across the present-day range of the Florida scrub-jay. These groups are largely consistent with the dispersal-defined metapopulations, which assume very limited dispersal ability. Some genetic groups comprise more than one metapopulation, likely because these genetically similar metapopulations were sundered only recently by habitat alteration. The combined reconstructions of population structure based on genetics and dispersal-mediated demographic connectivity provide a robust depiction of the current genetic and demographic organization of this species, reflecting past and present levels of dispersal among occupied habitat patches. The differentiation of populations into 10 genetic groups adds urgency to management efforts aimed at preserving what remains of genetic variation in this dwindling species, by maintaining viable populations of all genetically differentiated and geographically isolated populations. 相似文献
13.
The idiosyncratic behaviours of seed dispersers are important contributors to plant spatial associations and genetic structures. In this study, we used a combination of field, molecular and spatial studies to examine the connections between seed dispersal and the spatial and genetic structures of a dominant neotropical palm Attalea phalerata. Field observation and genetic parentage analysis both indicated that the majority of A. phalerata seeds were dispersed locally over short distances (<30 m from the maternal tree). Spatial and genetic structures between adults and seedlings were consistent with localized and short-distance seed dispersal. Dispersal contributed to spatial associations among maternal sibling seedlings and strong spatial and genetic structures in both seedlings dispersed near (<10 m) and away (>10 m) from maternal palms. Seedlings were also spatially aggregated with juveniles. These patterns are probably associated with the dispersal of seeds by rodents and the survival of recruits at specific microsites or neighbourhoods over successive fruiting periods. Our cross-cohort analyses found palms in older cohorts and cohort pairs were associated with a lower proportion of offspring and sibling neighbours and exhibited weaker spatial and genetic structures. Such patterns are consistent with increased distance- and density-dependent mortality over time among palms dispersed near maternal palms or siblings. The integrative approaches used for this study allowed us to infer the importance of seed dispersal activities in maintaining the aggregated distribution and significant genetic structures among A. phalerata palms. We further conclude that distance- and density-dependent mortality is a key postdispersal process regulating this palm population. 相似文献
14.
This study used eight polymorphic microsatellite loci to examine the relative effects of social organization and dispersal on fine‐scale genetic structure in an obligately cooperative breeding bird, the white‐winged chough (Corcorax melanorhamphos). Using both individual‐level and population‐level analyses, it was found that the majority of chough groups consisted of close relatives and there was significant differentiation among groups (FST = 0.124). However, spatial autocorrelation analysis revealed strong spatial genetic structure among groups up to 2 km apart, indicating above average relatedness among neighbours. Multiple analyses showed a unique lack of sex‐biased dispersal. As such, choughs may offer a model species for the study of the evolution of sex‐biased dispersal in cooperatively breeding birds. These findings suggest that genetic structure in white‐winged choughs reflects the interplay between social barriers to dispersal resulting in large family groups that can remain stable over long periods of times, and short dispersal distances which lead to above average relatedness among neighbouring groups. 相似文献
15.
Pedram Kashiani Ghizan Saleh Jothi Malar Panandam Nur Ashikin Psyquay Abdullah Ahmad Selamat 《Genetics and molecular biology》2012,35(3):614-621
A study of genetic variation among 10 pairs of chromosomes extracted from 13 tropical sweet corn inbred lines, using 99 microsatellite markers, revealed a wide range of genetic diversity. Allelic richness and the number of effective alleles per chromosome ranged from 2.78 to 4.33 and 1.96 to 3.47, respectively, with respective mean values of 3.62 and 2.73. According to the Shannon’s information index (I) and Nei’s gene diversity coefficient (Nei), Chromosome 10 was the most informative chromosome (I = 1.311 and Nei = 0.703), while Chromosome 2 possessed the least (I = 0.762 and Nei = 0.456). Based on linkage disequilibrium (LD) measurements for loci less than 50 cM apart on the same chromosome, all loci on Chromosomes 1, 6 and 7 were in equilibrium. Even so, there was a high proportion of genetic variation in Chromosomes 4, 5, 8, 9 and 10, thereby revealing their appropriateness for use in the genetic diversity investigations among tropical sweet corn lines. Chromosome 4, with the highest number of loci in linkage disequilibrium, was considered the best for marker-phenotype association and QTL mapping, followed by Chromosomes 5, 8, 9 and 10. 相似文献
16.
Improving the realism of spatially explicit demographic models is important for better inferring the history of past populations and for understanding the genetic bases of adaptation and speciation. One particular type of demographic event to take into account is long-distance dispersal (LDD). The goals of this study are to explore the impact of various levels of LDD on genetic diversity and to show to what extent LDD levels can be correctly inferred from multilocus data sets using an approximate Bayesian computation approach. We therefore incorporated LDD into a 2D stepping stone forward simulation framework coupled to a coalescent backward simulation step to generate genetic diversity at 100 microsatellite markers under various demographic conditions relevant to recent human evolution. Our results confirm that LDD considerably increases genetic diversity within demes and decreases levels of diversity between demes. By controlling the spatial occurrence of LDD, it appears that LDD events occurring during a phase of range expansion into new territories are more important in maintaining genetic diversity than those occurring in the wake of the expansion or when colonization is over. We also show that it is possible to infer whether LDD has occurred during a range expansion, but our results suggest that one can only approximately estimate the extent of LDD based on genetic summary statistics. 相似文献
17.
《Chemical Speciation and Bioavailability》2013,25(3):181-190
AbstractHeavy metal bioaccumulation and translocation properties of aquatic plants are interesting because of their potential use in phytoextraction. However, there is not enough knowledge about the seasonal changes of the metal distribution properties of aquatic plants. Our study focused on seasonal variation of some heavy metals in relation to their bioaccumulation and translocation in Nuphar lutea, a floating leaved, widespread plant that is important to wildlife. In this study, N. lutea, corresponding sediment and water samples were collected at different seasons from Lake Abant (Turkey) and analysed for their heavy metal content (Pb, Cr, Cu, Mn, Ni, Zn and Cd). Accumulation and translocation of heavy metal ratios were calculated seasonally. It was found that Cr and Zn were actively transported from sediment to the root, where they accumulated especially in summer; it was also shown that Cu, Mn and Zn were not only taken up from the sediment but also from the surrounding water. The investigations suggested that translocation ratios for leaf/root of Pb, Cr, Mn and Zn reached their highest levels in spring. It was found that the bioaccumulation and translocation of heavy metals at different parts of N. lutea changes with respect to season and the type of heavy metal. 相似文献
18.
Castanea squinii Dode, an endemic tree widely distributed in China, plays an important role both in chestnut breeding and forest ecosystem
function. The spatial genetic structure within and among populations is an important part of the evolutionary and ecological
genetic dynamics of natural populations, and can provide insights into effective conservation of genetic resources. In the
present study, the spatial genetic structure of a panmictic natural population of C. sequinii in the Dabie Mountain region was investigated using microsatellite markers. Nine prescreened microsatellite loci generated
29–33 alleles each, and were used for spatial autocorrelation analysis. Based on Moran’s I coefficient, a panmictic population of C. sequinii in the Dabie Mountain region was found to be lacking a spatial genetic structure. These results suggest that a high pollen-mediated
gene flow among subpopulations counteract genetic drift and/or genetic differentiation and plays an important role in maintaining
a random and panmictic population structure in C. sequinii populations. Further, a spatial genetic structure was detected in each subpopulation’s scale (0.228 km), with all three subpopulations
showing significant fine-scale structure. The genetic variation was found to be nonrandomly distributed within 61 m in each
subpopulation (Moran’s I positive values). Although Moran’s I values varied among the different subpopulations, Moran’s I in all the three subpopulations reached the expected values with an increase in distances, suggesting a generally patchy
distribution in the subpopulations. The fine-scale structure seems to reflect restricted seed dispersal and microenvironment
selection in C. sequinii. These results have important implications for understanding the evolutionary history and ecological process of the natural
population of C. sequinii and provide baseline data for formulating a conservation strategy of Castanea species.
__________
Translated from Acta Phytoecologica Sinica, 2006, 30(1): 147–156 [译自: 植物生态学报] 相似文献
19.
Genetic characterization of Latin-American Creole cattle using microsatellite markers 总被引:1,自引:0,他引:1
Delgado JV Martínez AM Acosta A Alvarez LA Armstrong E Camacho E Cañón J Cortés O Dunner S Landi V Marques JR Martín-Burriel I Martínez OR Martínez RD Melucci L Muñoz JE Penedo MC Postiglioni A Quiróz J Rodellar C Sponenberg P Uffo O Ulloa-Arvizu R Vega-Pla JL Villalobos A Zambrano D Zaragoza P Gama LT Ginja C 《Animal genetics》2012,43(1):2-10
Genetic diversity in and relationships among 26 Creole cattle breeds from 10 American countries were assessed using 19 microsatellites. Heterozygosities, F-statistics estimates, genetic distances, multivariate analyses and assignment tests were performed. The levels of within-breed diversity detected in Creole cattle were considerable and higher than those previously reported for European breeds, but similar to those found in other Latin American breeds. Differences among breeds accounted for 8.4% of the total genetic variability. Most breeds clustered separately when the number of pre-defined populations was 21 (the most probable K value), with the exception of some closely related breeds that shared the same cluster and others that were admixed. Despite the high genetic diversity detected, significant inbreeding was also observed within some breeds, and heterozygote excess was detected in others. These results indicate that Creoles represent important reservoirs of cattle genetic diversity and that appropriate conservation measures should be implemented for these native breeds in order to minimize inbreeding and uncontrolled crossbreeding. 相似文献
20.
We report a genetic diversity study of Kherigarh cattle, a utility draught-purpose breed of India, currently declining at a startling rate, by use of microsatellite markers recommended by the Food and Agriculture Organization. Microsatellite genotypes were derived, and allelic and genotypic frequencies, heterozygosities and gene diversity were estimated. A total of 131 alleles were distinguished by the 21 microsatellite markers used. All the microsatellites were highly polymorphic, with mean (±s.e.) allelic number of 6.24 ±1.7, ranging 4–10 per locus. The observed heterozygosity in the population ranged between 0.261 and 0.809, with mean (±s.e.) of 0.574 ±0.131, indicating considerable genetic variation in this population. Genetic bottleneck hypotheses were also explored. Our data suggest that the Kherigarh breed has not experienced a genetic bottleneck in the recent past. 相似文献