首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The basic protein of myelin can spontaneously associate with the synthetic phospholipid N-palmitoylsphingosinephosphatidylcholine. The protein alters the phase transition properties of the lipid from a single transition at 41.5°C to two overlapping transitions, one being slightly above and the other slightly below the transition temperature of the pure lipid. The effect was not seen upon the addition of poly(l-lysine) to this lipid nor does the myelin basic protein alter the phase transition properties of dimyristoylphosphatidylcholine. The results thus demonstrate that the myelin basic protein can interact with a major zwitterionic lipid component of myelin in addition to acidic phospholipids.  相似文献   

2.
The effect of myelin basic protein on the myelin lipid cerebroside sulfate was studied by differential scanning calorimetry and use of the fatty acid spin label, 16-S-SL, in order to determine (i) the effect of basic protein on the metastable phase behavior experienced by this lipid, and (ii) to determine if basic protein perturbs the lipid packing as it does with some acidic phospholipids. The effects of basic protein on the thermodynamic parameters of the lipid phase transition were compared with those of polylysine which has an ordering effect on acidic phospholipids as a result of its electrostatic interactions with the lipid head groups. Different synthetic species of cerebroside sulfate of varying fatty acid chain length and with and without a hydroxy fatty acid were used. The non-hydroxy fatty acid forms of cerebroside sulfate undergo a transition from a metastable to a more ordered stable state while the hydroxy fatty acid forms remain in the metastable state at the cation concentration used in this study (0.01 M Na+ or K+). The non-hydroxy fatty acid forms were still able to go into a stable state in the presence of both basic protein and polylysine. At low concentrations, basic protein increased the rate of the transition to the stable state, while polylysine decreased it for the longest chain length form studied. However, at high concentrations, basic protein probably prevented formation of the stable state. The hydroxy fatty acid forms did not go into the stable state in the presence of basic protein and polylysine. It is argued that the increased rate of formation of the stable state in the presence of basic protein and decreased rate in the presence of polylysine are consistent with interdigitation of the lipid acyl chains in the stable state. Basic protein also had a small perturbing effect on the lipid. It decreased the total enthalpy of the lipid phase transition. When added to the non-hydroxy fatty acid forms it increased the temperature of the liquid crystalline to metastable phase transition and decreased the temperature of the stable to liquid crystalline phase transition. It significantly decreased the transition temperature of the hydroxy fatty acid forms but only a portion of the lipid was affected. In contrast, polylysine increased the transition temperature of the metastable and stable states of all forms of cerebroside sulfate but had a greater effect on the non-hydroxy fatty acids forms than on the hydroxy fatty acid forms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
G Ramsay  R Prabhu  E Freire 《Biochemistry》1986,25(8):2265-2270
A newly designed high-sensitivity isothermal reaction calorimetry system has been used to investigate the thermodynamics of the association between myelin basic protein and phosphatidylserine vesicles. This instrument has allowed us to measure directly the energetics of the protein-lipid interaction under various conditions. Above the phospholipid phase transition temperature the enthalpy of association is highly exothermic amounting to -160 kcal/mol of protein. Below the phospholipid phase transition temperature the enthalpy of association is exothermic at protein/lipid ratios smaller than 1/50 and endothermic at higher protein/lipid ratios. These studies indicate that the association of myelin basic protein to phosphatidylserine vesicles consists of at least two stages involving different types of binding. The first stage, at low protein/lipid ratios, involves a strong exothermic association of the protein to the membrane and the second, at high protein/lipid ratios, a weaker association probably involving attachment of the protein to the membrane surface only. In the gel phase the second binding stage is endothermic and appears to be correlated with the formation of large vesicle aggregates. This vesicle aggregation is a reversible process dependent upon the physical state of the membrane. The isothermal titration studies have been complemented with high-sensitivity differential scanning calorimetry experiments. It is shown that the dependence of the phospholipid transition enthalpy on the protein/lipid molar ratio can be expressed in terms of the different protein-membrane association enthalpies in the gel and fluid phases of the membrane.  相似文献   

4.
It was previously shown that myelin basic protein (MBP) can induce phase segregation in whole myelin monolayers and myelin lipid films, which leads to the accumulation of proteins into a separate phase, segregated from a cholesterol-enriched lipid phase. In this work we investigated some factors regulating the phase segregation induced by MBP using fluorescent microscopy of monolayers formed with binary and ternary lipid mixtures of dihydrocholesterol (a less-oxidable cholesterol analog) and phospholipids. The influence of the addition of salts to the subphase and of varying the lipid composition was analyzed. Our results show that MBP can induce a dihydrocholesterol-dependent segregation of phases that can be further regulated by the electrolyte concentration in the subphase and the composition (type and proportion) of non-sterol lipids. In this way, changes of the lipid composition of the film or the ionic strength in the aqueous media modify the local surface density of MBP and the properties (phase state and composition) of the protein environment.  相似文献   

5.
The advances over the last 10 years on the understanding of myelin heterogeneity are reviewed. The main focus is on the applicability of Langmuir monolayers, Langmuir-Blodgett films and some associated techniques to unravelling the behaviour of interfaces formed with all the components of a natural membrane. Lipid-protein lateral segregation appears as a major driving force to determine surface patterns that can change under compression from circular domains to two-dimensional fractal structures. The major proteins of the myelin membrane induce lateral segregation in an otherwise homogeneous surface formed by the mixture of total myelin lipids. The lipid and protein components appear to distribute in the surface domains according to their charge, compressibility and relative molecular weight: myelin proteins, ganglioside GM1 and fluorescent lipid probes partition into liquid-expanded phase domains; other components such as phosphatidylserine and galactocerebroside partition into another liquid phase enriched in cholesterol. Simplified protein-lipid mixtures allow assessment of the participation of the major proteins in the two dimensional pattern development. One of the major myelin proteins, the Folch-Lees proteolipid, self-segregates into, and determines formation of, fractal-like patterns. The presence of the second major protein, myelin basic protein, leads to round liquid-expanded domains in the absence of Folch-Lees proteolipid and softens the boundaries of the fractal structures in its presence. The location of myelin basic protein in the interface is surface pressure sensitive, being slightly squeezed out at high surface pressure, allowing the fractal domains enriched in Folch-Lees proteolipid to evolve.  相似文献   

6.
The hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine([125I]TID) was used to label myelin basic protein or polylysine in aqueous solution and bound to lipid vesicles of different composition. Although myelin basic protein is a water soluble protein which binds electrostatically only to acidic lipids, unlike polylysine it has several short hydrophobic regions. Myelin basic protein was labeled to a significant extent by TID when in aqueous solution indicating that it has a hydrophobic site which can bind the reagent. However, myelin basic protein was labeled 2-4-times more when bound to the acidic lipids phosphatidylglycerol, phosphatidylserine, phosphatidic acid, and cerebroside sulfate than when bound to phosphatidylethanolamine, or when in solution in the presence of phosphatidylcholine vesicles. It was labeled 5-7-times more than polylysine bound to acidic lipids. These results suggest that when myelin basic protein is bound to acidic lipids, it is labeled from the lipid bilayer rather than from the aqueous phase. However, this conclusion is not unequivocal because of the possibility of changes in the protein conformation or degree of aggregation upon binding to lipid. Within this limitation the results are consistent with, but do not prove, the concept that some of its hydrophobic residues penetrate partway into the lipid bilayer. However, it is likely that most of the protein is on the surface of the bilayer with its basic residues bound electrostatically to the lipid head groups.  相似文献   

7.
Myelin purified from the central nervous system of Xenopus laevis contained the same major lipid and protein components as human myelin. However, some minor differences in the myelin proteins were noted. The Xenopus basic protein had a higher apparent mol wt. on sodium dodecyl sulfate gels than the corresponding mammalian protein. The absolute specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase in the Xenopus myelin was considerably higher than in mammals. There were differences in the high mol wt. proteins, and the glycoproteins in Xenopus myelin were more heterogeneous than those in mammals. Peripheral myelin from Xenopus sciatic nerve was compared with that from the rat. The lipids in the two types of myelin were similar. There was a major glycoprotein in the Xenopus myelin corresponding to the P0 protein and a basic protein of slightly larger mol wt. than the P1 protein of rat myelin.  相似文献   

8.
The effect of cholesterol on myelin basic protein-induced aggregation of zwitterionic phospholipid vesicles was studied by turbidimetry, quasi-elastic light scattering and centrifugation techniques. Without cholesterol, the degree of vesicle aggregation caused by myelin basic protein is relatively low and is only slightly increased using cholesterol concentrations up to approx. 25-30 mol%. When the cholesterol content in the bilayer exceeds approx. 30 mol%, there is a dramatic increase in the susceptibility of the vesicles to aggregation in the presence of myelin basic protein. Palmitoyl aldehyde and eicosane, substances resembling products of lipid degradation, increase myelin basic protein promoted fusion of vesicles. The fusion is accompanied by increased leakage of entrapped carboxyfluorescein. In the presence of cholesterol, myelin basic protein-induced fusion of the liposomes becomes much more sensitive to the presence of aliphatic aldehydes or alkanes. The results suggest that cholesterol has an important role in promoting membrane adhesion in biological systems but these structures become unstable in the presence of small amounts of products of lipid degradation. The findings have important implications to the understanding of the stability of the myelin membrane.  相似文献   

9.
In our previous studies we have demonstrated that bovine myelin appears highly susceptible to oxidative damage to both its lipid and protein composition. In order to determine whether these alterations would affect the accessibility of myelin components to a fluorescent probe, we have performed various labeling experiments using dansyl chloride. Results from labeling of purified bovine myelin treated with or without cumene hydroperoxide show that basic protein from treated myelin incorporated more dansyl chloride than basic protein from untreated myelin. This increase of labeling could be prevented by the addition of the antioxdant agent, butylated hydroxytoluene. This evidence suggests that lipid peroxidation may play an important role in the pathogenesis of inflammatory demyelinating diseases.  相似文献   

10.
Myelin basic protein derived from bovine spinal cord has been interacted with liposomes of varying brain lipid compositions. The effects of salt and protein concentration on liposome cross linking has been investigated. It appears that myelin basic protein cannot link liposomes composed of brain-derived phosphatidyl choline. Myelin basic protein can link liposomes composed of phosphatidyl serine; phosphatidyl serine + cholesterol; phosphatidyl serine + cholesterol + cerebroside sulphate. Linking of liposomes occurs at protein concentrations lower than those required for myelin basic protein dimers to be formed. Therefore, it seems that the monomeric form of myelin basic protein links lipid bilayers. The presence of cholesterol in the bilayer increases the ability of myelin basic protein to aggregate such liposomes compared with the linking ability of the polycationic polypeptide, poly-l-lysine.  相似文献   

11.
The myelin basic protein from bovine brain tissue was purified and the two peptides obtained by cleavage of the polypeptide chain at the single tryptophan residue were isolated. The interaction of these peptides and the intact basic protein with complex lipids was investigated by following the solubilization of lipid-protein complexes into chloroform in a biphasic solvent system. The C-terminal peptide fragment (residues 117-170) and the intact basic protein both formed chloroform-soluble complexes with acidic lipids, but not with neutral complex lipids. The N-terminal fragment (residues 1-115) did not form chloroform-soluble complexes with either acidic or neutral complex lipids. The molar ratio of lipid to protein that caused a 50% loss of protein from the upper phase to the lower chloroform phase was the same for the intact basic protein as for the smaller C-terminal peptide fragment. Phosphatidylserine and phosphatidylinositol were approximately twice as efficient as sulphatide at causing protein redistribution to the chloroform phase. The results are interpreted as indicating that the sites for ionic interactions between lipid and charged groups on the basic protein of myelin are located in the C-terminal region of the protein molecule.  相似文献   

12.
The capacity of myelin basic protein or of poly-L-lysine to promote leakage of carboxyfluorescein from vesicles or the aggregation of vesicles was studied. The vesicles were composed of phosphatidylcholine as the sole or major lipid component. Addition of 10% sphingomyelin, 10% phosphatidylglycerol, 10% egg or bovine brain phosphatidylethanolamine, or 30% dodecanal had relatively little effect on the extent of carboxyfluorescein release in the presence of either myelin basic protein or poly-L-lysine. In contrast with these results, the extent of vesicle aggregation was very sensitive to lipid composition. Addition of 10% phosphatidylglycerol induced more aggregation than the other phospholipids tested. Admixing 10% of a partially degraded sample of bovine brain phosphatidylethanolamine also led to a large amount of aggregation induced by the myelin basic protein. This latter aggregation appeared more specific for the basic protein, as it occurred to a much smaller extent with poly-L-lysine. In general, the effects of the myelin basic protein on either carboxyfluorescein release or vesicle aggregation were similar to, although somewhat greater than, that of poly-L-lysine. The aggregation of vesicles containing degradation products of phosphatidylethanolamine can be ascribed largely to the presence of aliphatic aldehydes. The effect of aliphatic aldehydes was specific in that the aliphatic alcohol, hexadecanol, or the short-chain aldehydes, acetaldehyde or butyraldehyde, did not promote myelin basic protein-induced vesicle aggregation. In addition, poly-L-lysine was less effective than the basic protein in aggregating vesicles containing aliphatic aldehydes. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Lipophilin, a hydrophobic protein purified from the proteolipid of normal human brain myelin, was recombined with phosphatidylcholine by solubilization of the lipid and protein in 2-chloro-ethanol followed by dialysis against buffer. This method resulted in homogeneous incorporation of the protein into lipid vesicles as judged by sedimentation on a sucrose gradient and freeze fracture electron microscopy. The lipid-protein vesicles were single layered, 1000–2000 Å in diameter and the freeze fracture faces contained intramembrane particles. The effect of lipophilin on the organization of the lipid was studied by use of spin label probes. Two distinct components were present in the spectrum of fatty acid spin labels in the lipid-protein vesicles. One was immobilized presumably due to the presence of boundary lipid around the protein and the second component was indicative of aniostropic motion similar to the spectrum in phosphatidylcholine vesicles and probably due to a lamellar phase but with a slightly greater order parameter. Lipophilin was found to increase the order parameter linearly with increasing concentration of protein incorporated into the vesicles. However, the phase transition temperature as measured from the 2,2,6,6-tetramethyl piperidine-1-oxyl (TEMPO) solubility parameter was unchanged.  相似文献   

14.
Rapid conduction of nerve impulses requires coating of axons by myelin. To function as an electrical insulator, myelin is generated as a tightly packed, lipid-rich multilayered membrane sheath. Knowledge about the mechanisms that govern myelin membrane biogenesis is required to understand myelin disassembly as it occurs in diseases such as multiple sclerosis. Here, we show that myelin basic protein drives myelin biogenesis using weak forces arising from its inherent capacity to phase separate. The association of myelin basic protein molecules to the inner leaflet of the membrane bilayer induces a phase transition into a cohesive mesh-like protein network. The formation of this protein network shares features with amyloid fibril formation. The process is driven by phenylalanine-mediated hydrophobic and amyloid-like interactions that provide the molecular basis for protein extrusion and myelin membrane zippering. These findings uncover a physicochemical mechanism of how a cytosolic protein regulates the morphology of a complex membrane architecture. These results provide a key mechanism in myelin membrane biogenesis with implications for disabling demyelinating diseases of the central nervous system.  相似文献   

15.
A variety of proteins have been studied for their ability to interact and alter the thermotropic properties of phospholipid bilayer membranes as detected by differential scanning calorimeter. The proteins studied included: basic myelin protein (A1 protein), cytochrome c, major apoprotein of myelin proteolipid (N-2 apoprotein), gramicidin A, polylysine, ribonuclease and hemoglobin. The lipids used for the interactions were dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol. The interactions were grouped in three catagories each having very different effects on the phospholipid phase transition from solid to liquid crystalline. The calorimetric studies were also correlated with data from vesicle permeability and monolayer expansion. Ribonuclease and polylysine which exemplify group 1 interactions, show strong dependence on electrostatic binding. Their effects on lipid bilayers include an increase in the enthalpy of transition (deltaH) accompanied by either an increase or no change in the temperature of transition (Tc). In addition, they show minimal effects on vesicle permeability and monolayer expansion. It was concluded that these interactions represent simple surface binding of the protein on the lipid bilayer without penetration into the hydrocarbon region. Cytochrome c and A1 protein, which exemplify group 2 interactions, also show a strong dependence on the presence of net negative charges on the lipid bilayers for their binding. In contrast to the first group, however, they induce a drastic decrease in both Tc and deltaH of the lipid phase transition. Furthermore, they induce a large increase in the permeability of vesicles and a substantial expansion in area of closely packed monolayers at the air-water interface. It was concluded that group 2 interactions represent surface binding followed by partial penetration and/or deformation of the bilayer. Group 3 interactions, shown by proteolipid apoprotein and gramicidin A, were primarily non-polar in character, not requiring electrostatic charges and not inhibited by salt and pH changes. They had no appreciable effect on the Tc but did induce a linear decrease in the magnitude of the deltaH, proportional to the percentage of protein by weight. Membranes containing 50% proteolipid protein still exhibited a thermotropic transition with a deltaH one half that of the pure lipid, and only a small diminution of the size of the cooperative unit. It was concluded that in this case the protein was embedded within the bilayer, associating with a limited number of molecules via non-polar interactions, while the rest of the bilayer was largely unperturbed.  相似文献   

16.
31P-NMR and X-ray diffraction techniques are used to study the comparative ability of myelin basic protein (MBP) vs. other basic proteins to convert hexagonal (HII) phases to stable lamellar (L alpha) structures. Pure dioleoylphosphatidylethanolamine (DOPE) at pH 9 and 7, and mixtures of DOPE/phosphatidylserine (PS) (95:5 and 80:20% w/w) at pH 7 were employed for this investigation. The polymorphic behavior of the lipid suspensions was evaluated in the presence and absence of several basic proteins (MBP, calf thymus histone, lysozyme, melittin) and the cationic polypeptide, polylysine (PL). Each of the proteins and PL was capable of binding the pure DOPE HII phase at pH 9 but with varying morphological consequences, i.e., lamellar stabilization (MBP, histone, PL), formation of new protein-DOPE HII phases (lysozyme) or lipid disordering/vesiculation (melittin). Reduction to pH 7 resulted in the dissociation of protein from DOPE - with the exception of melittin - and the reformation of a pure lipid HII phase. Additions of PS to DOPE at pH 7 facilitated protein binding, but among the proteins examined, only MBP was capable of converting the lipid suspension into a stable multilamellar form. Differences in the lipid morphology produced by each protein are discussed in terms of protein physicochemical characteristics. In addition, a possible relationship between MBP-lipid interactions and the stability of myelin sheath lipid multilayers is inferred from the significant bilayer-stabilizing capacity of MBP.  相似文献   

17.
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups.  相似文献   

18.
The interaction of glucagon, human parathyroid hormone-(1-34)-peptide and salmon calcitonin with dimyristoylphosphatidylglycerol (DMPG) and with dimyristoylphosphatidylcholine (DMPC) was studied as a function of pH and temperature. The effect of lipid on the secondary structure of the peptide was assessed by circular dichroism and the effect of the peptide on the phase transition properties of the lipid was studied using differential scanning calorimetry. Some peptides interact more strongly with anionic than with zwitterionic phospholipids. This does not require an overall positive charge on the peptide. Increased thermal stability is observed in complexes formed between cationic peptides and anionic lipids. Particularly marked effects of glucagon and human parathyroid hormone-(1-34)-peptide on the phase transition properties of DMPG at pH 5 have been observed. The transition temperature is raised over 10 degrees C at a lipid/peptide molar ratio of less than 30:1 and the transition enthalpy is increased over 2-fold. These effects do not occur with any basic peptide and were not observed with metorphinamide, molluscan cardioexcitatory neuropeptide or myelin basic protein. The results demonstrate that certain peptides can affect the phase transition properties of lipids in a manner similar to divalent cations. The overall hydrophobicities of these peptides can be evaluated by their partitioning between aqueous and organic solvents. None of the above three peptide hormones partition into the organic phase. However, a closely related peptide, human calcitonin, does exhibit substantial partitioning into the organic phase. Nevertheless, human calcitonin has a weaker interaction with both DMPC and DMPG than does salmon calcitonin. The effects of human calcitonin on the phase transition of DMPC are qualitatively different from those of salmon calcitonin in that the human form more readily eliminates the pretransition but causes less change in the main transition. Like overall charge, overall hydrophobicity is not an overwhelming factor in determining the ability of peptides to interact with phospholipids but rather more specific interactions are required for strong complexes to form.  相似文献   

19.
Under certain preparative conditions the lipid bilayers of glutaraldehyde-fixed, PNS myelin demonstrate a marked compartmentalization, which can be augmented by lipid extraction following sectioning. The results are interpreted as indicating a supramolecular domain pattern of arrangement centered upon the transmembrane protein (P0) molecules. The latter are thought to be surrounded by annuli of substantially immobilized phospholipids. In the lamellar planes particular lipids are considered to have a nonrandom distribution. The visualization of bilayer compartmentalization was seen only in negatively stained sections obtained from unembedded or glutaraldehyde-urea-embedded myelin. Lipids were unextracted in the basic preparations except in so far as some unfixed, amphipathic molecules escaped at the trough-fluid interface at the time of sectioning, an observed phenomenon which probably aided in the visualization of the compartmentalization. Visualization was also augmented by surface tension expanding section fragments as they floated on the trough fluid. All stages of transition between well-ordered myelin and dispersed globular units were commonly to be found. Deliberately delipidated myelin exposed more sharply defined and smaller globular units in bilayer regions, but even these are regarded as being supramolecular aggregates including residual lipid annuli around the transmembrane proteins. The addition of cadmium ions as a "fixative" for lecithin seemed to improve the preservation of glutaraldehyde-urea-embedded myelin but was not strictly necessary to reveal its domain structure. A secondary tannic acid fixation was required to process unembedded myelin so as to reveal the fundamental compartmentalization of its lipid bilayers.  相似文献   

20.
Summary The effect of myelin basic protein from normal human central nervous system on lipid organization has been investigated by studying model membranes containing the protein by differential scanning calorimetry or electron spin resonance spectroscopy. Basic protein was found to decrease the phase transition temperature of dipalmitoyl phosphatidyl-glycerol, phosphatidic acid, and phosphatidylserine. The protein had a greater effect on the freezing temperature, measured from the cooling scan, than on the melting temperature, measured from the heating scan. These results are consistent with partial penetration of parts of the protein into the hydrocarbon region of the bilayer in the liquid crystalline state and partial freezing out when the lipid has been cooled below its phase transition temperature.The effect of the protein on fatty acid chain packing was investigated by using a series of fatty acid spin labels with the nitroxide group located at different positions along the chain. If the protein has not yet penetrated, it increases the order throughout the bilayer in the gel phase, probably by decreasing the repulsion between the lipid polar head groups. Above the phase transition temperature, when parts of it are able to penetrate, it decreases the motion of the lipid fatty acid chains greatly near the polar head group region, but has little or no effect near the interior of the bilayer. Upon cooling again the protein still decreases the motion near the polar head group region but increases it greatly in the interior. Thus, the protein penetrates partway into the bilayer, distorts the packing of the lipid fatty acid chains, and prevents recrystallization, thus decreasing the phase transition temperature.The magnitude of the effect varied with the lipid and was greatest for phosphatidic acid and phosphatidylglycerol. It could be reversed upon cooling for phosphatidylglycerol but not phosphatidic acid. The protein was only observed to decrease the phase transition temperature of phosphatidylserine upon cooling. It had only a small effect on phosphatidylethanolamine and no effect on phosphatidylcholine. Thus, the protein may penetrate to a different extent into different lipids even if it binds to the polar head group region by electrostatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号