首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium-induced fragmentation of skeletal muscle nebulin filaments.   总被引:1,自引:0,他引:1  
When chicken breast muscle myofibrils were treated with a solution containing 0.1 mM CaCl2 and 30 micrograms of leupeptin/ml, nebulin filaments were fragmented into 200-, 180-, 40-, 33-, and 23-kDa subfragments. All the subfragments except the 180-kDa one were released from the myofibrils. The fragmentation of nebulin filaments seems to be induced by the binding of large amounts of calcium ions. Similar changes took place in nebulin filaments in post-mortem skeletal muscle. It has been proposed that nebulin co-exists with thin (actin) filaments and participates in stabilizing their organization [Wang, K. & Wright, J. (1988) J. Cell Biol. 107, 2199-2212]. Thus, the above result suggests that Ca-induced fragmentation of nebulin filaments destabilizes the organization of thin filaments and is a key factor in meat tenderization during post-rigor aging.  相似文献   

2.
Purification of dystrophin from skeletal muscle   总被引:16,自引:0,他引:16  
Dystrophin was purified from rabbit skeletal muscle by alkaline dissociation of dystrophin-glycoprotein complex which was first prepared by derivatized lectin chromatography. Dystrophin-glycoprotein complex was isolated from digitonin-solubilized rabbit skeletal muscle membranes by a novel two-step method involving succinylated wheat germ agglutinin (sWGA) chromatography and DEAE-cellulose ion exchange chromatography. Proteins co-purifying with dystrophin were a protein triplet of Mr 59,000 and four glycoproteins of Mr 156,000, 50,000, 43,000, and 35,000, all previously identified as components of the dystrophin-glycoprotein complex. Alkaline treatment of sWGA/DEAE-purified dystrophin-glycoprotein complex resulted in complete dissociation of the dystrophin-glycoprotein complex. In order to separate dystrophin from its associated proteins, alkaline-dissociated dystrophin-glycoprotein complex was sedimented by sucrose gradient centrifugation. The residual glycoproteins which contaminated peak dystrophin-containing gradient fractions were then removed by WGA-Sepharose adsorption. The resulting protein appeared as a single band with an apparent Mr of 400,000 on overloaded Coomassie Blue-stained gels. The absence of WGA-peroxidase staining on nitrocellulose transfers of the pure protein indicated that the pure protein was devoid of contaminating glycoproteins. Antisera raised against the carboxyl terminus of human skeletal muscle dystrophin (which does not cross-react with the carboxyl terminus of the chromosome 6-encoded dystrophin-related protein) recognized the pure protein as did antisera specific for the amino terminus of human dystrophin. These data indicate that the protein isolated is indeed the intact, predominant skeletal muscle isoform product of the Duchenne muscular dystrophy gene.  相似文献   

3.
Z-Line of skeletal muscle is a complex protein network that likely plays an important role in signaling and muscle homeostasis. We used the yeast two-hybrid system to search for potential novel ligands of the Z-line portion of nebulin. We found that the C-terminal region of nebulin (residues 6457-6528) interacted with the C-terminus of archvillin (residues 1419-1687). Archvillin is a membrane skeletal protein that localizes to costameres, specialized adhesion sites in muscle. The binding sites between nebulin and archvillin were characterized using the yeast two-hybrid system, in vitro pull-down assays, and colocalization experiments in COS-7 cells. Our data suggest a model in which archvillin attaches directly to the Z-line through an interaction with the nebulin C-terminus. The interaction between nebulin and archvillin may provide a direct link between the sarcolemma and myofibrillar Z-lines.  相似文献   

4.
5.
Sarcopenia describes the involuntary decline in muscle mass with aging, coupled with fatigue, and loss of force and function. We investigated 113 human muscle biopsy specimens obtained from patients with neuromuscular diseases and controls. We measured 21 amino acids in these muscle biopsies. Age emerged as a significant negative predictor of cytosolic concentration ratio of glutamine to total branched chain amino acids and of glutamine to total aromatic amino acids using stepwise multiple linear regression analysis. This pattern of alteration corresponds well to documented alterations in skeletal muscle of critically ill patients and after immobilization. Additionally, in myositis, citrulline was significantly elevated, while glutamate, lysine and taurine were significantly reduced. Furthermore, in sporadic amyotrophic lateral sclerosis (sALS) the total aromatic amino acids, arginine, glutamate, threonine, and tyrosine were significantly elevated. This study provides evidence, that alteration of glutamine is correlated to aging and might reflect increased proteolysis in aged and diseased human skeletal muscle.  相似文献   

6.
We have investigated the adaptations of the cytoskeletal proteins desmin and dystrophin in relationship to known muscular adaptations of resistance exercise. We measured desmin, dystrophin, and actin protein contents, myosin heavy chain (MHC) isoform distribution, muscle strength, and muscle cross-sectional area (CSA) during 8 wk of progressive resistance training or after a single bout of unaccustomed resistance exercise. Muscle biopsies were taken from the vastus lateralis of 12 untrained men. For the single-bout group (n=6) biopsies were taken 1 wk before the single bout of exercise (week 0) and 1, 2, 4, and 8 wk after this single bout of exercise. For the training group (n=6), biopsies were taken 1 wk before the beginning of the program (week 0) and at weeks 1, 2, 4, and 8 of the progressive resistance training program. Desmin, dystrophin, and actin protein levels were determined with immunoblotting, and MHC isoform distribution was determined using SDS-PAGE at each time point for each group. In the training group, desmin was significantly increased compared with week 0 beginning at week 4 (182% of week 0; P<0.0001) and remained elevated through week 8 (172% of week 0; P<0.0001). Desmin did not change at any time point for the single-bout group. Actin and dystrophin protein contents were not changed in either group at any time point. The percentage of MHC type IIa increased and MHC type IIx decreased at week 8 in the training group with no changes occurring in the single-bout group. Strength was significantly increased by week 2 (knee extension) and week 4 (leg press), and it further increased at week 8 for both these exercises in the training group only. Muscle CSA was significantly increased at week 4 for type II fibers in the training group only (5,719+/-382 and 6,582+/-640 microm2, weeks 0 and 4, respectively; P<0.05). Finally, a significant negative correlation was observed between the desmin-to-actin ratio and the percentage of MHC IIx (R=-0.31; P<0.05, all time points from both groups). These data demonstrate a time course for muscular adaptation to resistance training in which desmin increases shortly after strength gains and in conjunction with hypertrophy, but before changes in MHC isoforms, whereas dystrophin remains unchanged.  相似文献   

7.
8.
9.
Summary We examined the morphological expression of dystrophin in the intrafusal muscle fibers in skeletal muscle from normal human and Duchenne muscular dystrophy (DMD) patients, using antisera against the N-terminal and C-terminal regions of dystrophin. The intrafusal fibers of normal muscle express dystrophin on their cell surface membrane, but those of DMD muscle do not.Abbreviation DMD Duchenne muscular dystrophy  相似文献   

10.
《FEBS letters》1993,320(3):276-280
Duchenne muscular dystrophy (DMD) patients and mdx mice are characterized by the absence of dystrophin, a membrane cytoskeletal protein. Dystrophin is associated with a large oligomeric complex of sarcolemmal glycoproteins, including dystroglycan which provides a linkage to the extarcellular matrix component, laminin. The finding that all of the dystrophin-associated proteins (DAPs) are drastically reduced in DMD and mdx skeletal muscle supports the primary function of dystrophin as an anchor of the sarcolemmal glycoprotein complex to the subsarcolemmal cytoskeleton. These findings indicate that the efficacy of dystrophin gene therapy will depend not only on replacing dystrophin but also on restoring all of the DAPs in the sarcolemma. Here we have investigated the status of the DAPs in the skeletal muscle of mdx mice transgenic for the dystrophin gene. Our results demonstrate that transfer of dystrophin gene restores all of the DAPs together with dystrophin, suggesting that dystrophin gene therapy should be effective in restoring the entire dystrophin-glycoprotein complex.  相似文献   

11.
Polyclonal antibodies to dystrophin (the protein product of the human Duchenne muscular dystrophy gene) were used to identify and characterize dystrophin in isolated triads from rabbit skeletal muscle. Anti-dystrophin antibodies recognize an approximately 400,000-Da protein in isolated triads or heavy microsomes from skeletal muscle. Treatment of heavy microsomes with buffers containing high salt or EDTA to remove peripheral or extrinsic membrane proteins does not remove dystrophin; however, treatment of intact triads with trypsin shows that dystrophin is extremely sensitive to mild proteolytic digestion. Isolation of junctional complexes from skeletal muscle triads indicates that dystrophin is tightly associated with the triadic junction. Fractionation of the triadic junction into junctional transverse tubular membranes and junctional sarcoplasmic reticulum membranes has shown that dystrophin is enriched in junctional transverse tubular membranes. Thus, our results suggest that dystrophin is a component of the triad junction which is exposed to the cytoplasm and embedded in or attached to the transverse tubular membrane.  相似文献   

12.
The phenotypic differences among Duchenne muscular dystrophy patients, mdx mice, and mdx5cv mice suggest that despite the common etiology of dystrophin deficiency, secondary mechanisms have a substantial influence on phenotypic severity. The differential response of various skeletal muscles to dystrophin deficiency supports this hypothesis. To explore these differences, gene expression profiles were generated from duplicate RNA targets extracted from six different skeletal muscles (diaphragm, soleus, gastrocnemius, quadriceps, tibialis anterior, and extensor digitorum longus) from wild-type, mdx, and mdx5cv mice, resulting in 36 data sets for 18 muscle samples. The data sets were compared in three different ways: (1) among wild-type samples only, (2) among all 36 data sets, and (3) between strains for each muscle type. The molecular profiles of soleus and diaphragm separate significantly from the other four muscle types and from each other. Fiber-type proportions can explain some of these differences. These variations in wild-type gene expression profiles may also reflect biomechanical differences known to exist among skeletal muscles. Further exploration of the genes that most distinguish these muscles may help explain the origins of the biomechanical differences and the reasons why some muscles are more resistant than others to dystrophin deficiency. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Judith N. Haslett, Peter B. Kang These authors contributed equally to this work.  相似文献   

13.
A confocal laser microscope was used to analyze the localization pattern of dystrophin along the sarcolemma in guinea pig skeletal muscle fibers. Hind leg muscles of the normal animals were freshly dissected and frozen for cryostat sections, which were then stained with a monoclonal antidystrophin antibody. In confocal laser microscopy, immunofluorescence staining in relatively thick sections could be sharply imaged in thin optical sections. When longitudinal and transverse sections of muscle fibers were examined, the immunostaining of dystrophin was seen as linearly aligned fluorescent dots or intermittent lines along the sarcolemma. In longitudinally cut muscle fibers, many fluorescent dots, but not all, corresponded to the sarcomere pattern, especially the I band. Sections cut tangential to the sarcolemma also showed a lattice-like pattern of longitudinal and transverse striations of fluorescent dots. Double staining for dystrophin and vinculin showed that the two proteins were not exactly colocalized. The end portions of muscle fibers were much more intensely stained with antidystrophin antibody than the central portions, following the contour of elaborate surface specializations at the myo-tendon junction. The staining pattern at the myo-tendon junction was also discontinuous. These confocal microscopic observations suggest that dystrophin may be localized in a nonuniform, discontinuous pattern along the sarcolemma and in some relationship with the underlying myofibrils.  相似文献   

14.
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene locus, is expressed on the muscle fiber surface. One key to further understanding of the cellular function of dystrophin would be extended knowledge about its subcellular organization. We have shown that dystrophin molecules are not uniformly distributed over the humen, rat, and mouse skeletal muscle fiber surface using three independent methods. Incubation of single-teased muscle fibers with antibodies to dystrophin revealed a network of denser transversal rings (costameres) and finer longitudinal interconnections. Double staining of longitudinal semithin cryosections for dystrophin and alpha-actinin showed spatial juxtaposition of the costameres to the Z bands. Where peripheral myonuclei precluded direct contact of dystrophin to the Z bands the organization of dystrophin was altered into lacunae harboring the myonucleus. These lacunae were surrounded by a dystrophin ring and covered by a more uniform dystrophin veil. Mechanical skinning of single-teased fibers revealed tighter mechanical connection of dystrophin to the plasma membrane than to the underlying internal domain of the muscle fiber. The entire dystrophin network remained preserved in its structure on isolated muscle sarcolemma and identical in appearance to the pattern observed on teased fibers. Therefore, connection of defined areas of plasma membrane or its constituents such as ion channels to single sarcomeres might be a potential function exerted by dystrophin alone or in conjunction with other submembrane cytoskeletal proteins.  相似文献   

15.
R Nave  D O Fürst  K Weber 《FEBS letters》1990,269(1):163-166
Nebulin is a high molecular weight polypeptide (mass 0.6-0.8 million) which accounts for 3% of the myofibrillar mass in skeletal muscle. Due to its resistance to extraction under native conditions, relatively little is known about the biochemistry of the molecule. Here we report in vitro binding of alpha-actinin (a major Z-line protein) to nebulin. After solubilization with sodium dodecylsulfate myofibrillar polypeptides separated by gel electrophoresis were blotted on nitrocellulose and probed with 125I-labelled alpha-actinin. Nebulin is the only polypeptide decorated by alpha-actinin. This result gives biochemical support for the hypothesis, based on recent immunoelectron micrographs, that nebulin could form in skeletal muscle a fourth filament system, possibly extending to the Z-line.  相似文献   

16.
17.
Thein vitro degradation of dystrophin protein by endogenous proteases in human skeletal muscle has been investigated using a tissue homogenate assay system with subsequent protein analysis via SDS polyacrylamide electrophoresis and immunoblotting (using a monoclonal antibody to the central rod region of dystrophin). The rate of dystrophin degradation and nature of the proteolytic fragments formed at pH 5.5 and pH 7.5 (corresponding to the two major protease groups of relevance to intracellular protein catabolism) were broadly similar; incorporation of protease inhibitors in the above system suggested that Ca2+ activated proteinase and cathepsin D are principally responsible for the degradation of dystrophin at pH 7.5 and pH 5.5 respectively. The rate of dystrophin degradation at pH 7.5 was reduced by approximately 20% in the presence of 10–5 M clenbuterol, a -adrenoceptor agonist with therapeutic potential in the treatment of human muscle wasting diseases.  相似文献   

18.
We use a highly specific and sensitive antibody to further characterize the distribution of dystrophin in skeletal, cardiac, and smooth muscle. No evidence for localization other than at the cell surface is apparent in skeletal muscle and no 427-kD dystrophin labeling was detected in sciatic nerve. An elevated concentration of dystrophin appears at the myotendinous junction and the neuromuscular junction, labeling in the latter being more intense specifically in the troughs of the synaptic folds. In cardiac muscle the distribution of dystrophin is limited to the surface plasma membrane but is notably absent from the membrane that overlays adherens junctions of the intercalated disks. In smooth muscle, the plasma membrane labeling is considerably less abundant than in cardiac or skeletal muscle and is found in areas of membrane underlain by membranous vesicles. As in cardiac muscle, smooth muscle dystrophin seems to be excluded from membrane above densities that mark adherens junctions. Dystrophin appears as a doublet on Western blots of skeletal and cardiac muscle, and as a single band of lower abundance in smooth muscle that corresponds most closely in molecular weight to the upper band of the striated muscle doublet. The lower band of the doublet in striated muscle appears to lack a portion of the carboxyl terminus and may represent a dystrophin isoform. Isoform differences and the presence of dystrophin on different specialized membrane surfaces imply multiple functional roles for the dystrophin protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号