首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies we have shown that light-induced cis/trans isomerization of the azobenzene moiety in cyclo-[Ala-Cys-Ala-Thr-Cys-Asp-Gly-Phe-AMPB] [AMPB: (4-aminomethyl)phenylazobenzoic acid] leads both in the monocyclic and in the oxidized bicyclic form to markedly differentiated conformational states in DMSO, a fact that lends itself for photomodulation of the redox potential of such bis-cysteinyl-peptides. For this purpose water-soluble systems are required, and this was achieved by replacing three residues outside the Cys-Ala-Thr-Cys active-site motif of thioredoxin reductase with lysines. The resulting cyclo-[Lys-Cys-Ala-Thr-Cys-Asp-Lys-Lys-AMPB] fully retains its photoresponsive properties in water as well assessed by uv and CD measurements. Paralleling results of the previously investigated azobenzene-containing cyclic peptides, the trans --> cis isomerization of the water-soluble monocyclic and oxidized bicyclic peptide is accompanied by a marked transition from a well-defined conformation to an ensemble of possible conformations. However, the conformational preferences are very dissimilar from those of the DMSO-soluble peptides. In fact, hydrogen bonds as well as secondary structure elements were found that change in the mono- and bicyclic peptide upon irradiation. The photo switch between different turn types and hydrogen bonding networks offers the structural rational for the significantly differentiated redox potentials, but also the possibility of monitoring by femtosecond uv-vis and ir spectroscopy fast and ultra fast backbone rearrangement processes following the electronic trans --> cis isomerization.  相似文献   

2.
In previous studies we have investigated octapeptides backbone-cyclized by (4-amino)phenyl azobenzoic acid (APB) or (4-aminomethyl)phenylazobenzoic acid (AMPB) and containing the active-site sequence Cys-Ala-Thr-Cys-Asp from the thioredoxin reductase. The conformational and redox properties of these peptides were strongly dependent on the isomeric state of the azobenzene chromophore. Using the same approach we were successful in constructing photoresponsive ligands for alphavbeta3 integrin containing the Arg-Gly-Asp (RGD) sequence as binding motif. For achieving maximal conformational restriction of the peptide a reduced ring size compared to our previous azobenzene peptides was employed in the cyclic peptide c[Asp-D-Phe-Val-AMPB-Lys-Ala-Arg-Gly-]. Conformational properties of the trans and cis isomers of this peptide in solution were investigated by CD and NMR and were found to differ markedly from the thioredoxin derived azobenzene peptides. In a second peptide, c[Asp-D-Phe-Val-Lys-AMPB-Ala-Arg-Gly-], shifting the position of the chromophore lead to a marked decrease in affinity. With the availability of the x-ray structure of a cyclic RGD-pentapeptide bound to alphavbeta3 integrin (PDB entry 1L5G) modeling of possible bound conformations for trans and cis isomers of both azobenzene peptides was possible. Notably, both peptides in either isomeric form share the same overall conformation in the bound state according to our molecular dynamics simulations.  相似文献   

3.
The search for photoresponsive conformational transitions accompanied by changes in physicochemical and biological properties led us to the design of small cyclic peptides containing azobenzene moieties in the backbone. For this purpose, (4-aminomethyl)phenylazobenzoic acid (H-AMPB-OH) and (4-amino)phenylazobenzoic acid (H-APB-OH) were synthesized and used to cyclize a bis-cysteinyl-octapeptide giving monocyclic derivatives in which additional conformational restriction could be introduced by conversion to bicyclic structures with a disulphide bridge. While synthesis with H-AMPB-OH proceeded smoothly on a chlorotrityl-resin with Fmoc/tBu chemistry, the poor nucleophilicity of the arylamino group of H-APB-OH required special chemistry for satisfactory incorporation into the peptide chain. Additional difficulties were encountered in the reductive cleavage of the S-tert-butylthio group from the cysteine residues since concomitant reduction of the azobenzene moiety took place at competing rates. This difficulty was eventually bypassed by using the S-trityl protection. Side-chain cyclization of the APB-peptide proved to be difficult, suggesting that restricted conformational freedom was already present in the monocyclic form, a fact that was fully confirmed by NMR structural analysis. Conversely, the methylene spacer in the AMPB moiety introduced sufficient flexibility for facile and quantitative side-chain cyclization to the bicyclic form. Both of the monocyclic peptides and both of the bicyclic peptides are photoresponsive molecules which undergo cis/trans isomerization reversibly.  相似文献   

4.
The synthesis of an azobenzene amino acid (aa) for use as a photo-inducible conformational switch in polypeptides is described. The compound can be easily incorporated into an aa sequence by solid-phase peptide synthesis using standard 9-fluorenylmethoxycarbonyl methods. A reversible conformational change of the peptide backbone is induced by switching between the cis and trans configurations of the azobenzene moiety by irradiation with light of suitable wavelength. Thermal cis --> trans isomerization of this azobenzene aa is slow, enabling detailed structural investigations of the modified peptides, e.g., using NMR techniques. The total time for the synthesis of the photoswitch is typically 4 d, with an overall yield of 40-50%.  相似文献   

5.
It has been reported that backbone cyclization of octapeptides with the photoresponsive (4-aminomethyl)phenylazobenzoic acid imparts sufficient restraints to induce and stabilize ordered conformations of the peptide backbone in both the cis- and trans-azo-isomers (L. Ulysse, J. Cubillos, and J. Chmielewski, Journal of the American Chemical Society, 1995, Vol. 117, pp. 8466-8467). Correspondingly, the active-site octapeptide fragment H-Ala-Cys-Ala-Thr-Cys-Asp-Gly-Phe-OH [134-141] of thioredoxin reductase, with its high preference for a 3(10)-helix turn conformation centered on the Thr-Cys sequence, was backbone cyclized with this azobenzene moiety in the attempt to design a photoresponsive system where the conformational states of the peptide backbone are dictated by the configuration of the azobenzene and can be further modulated by the disulfide bridge. Nuclear magnetic resonance conformational analysis of the monocyclic compound clearly revealed the presence of two conformational families in both the cis- and trans-azo configuration. Of the higher populated conformational families, the structure of the trans-isomer seems like a pretzel-like folding, while the cis-isomer relaxes into a significantly less defined conformational state that does not exhibit any regular structural elements. Further restrictions imparted by disulfide bridging of the peptide moiety leads to an even better defined conformation for the trans-azo-isomer, whereas the cis-isomer can be described as a frustrated system without pronounced energy minima and thus with little conformational preferences. Our findings would suggest that this photoresponsive peptide template may not be of general usefulness for light-induced conformational transitions between two well-defined conformational states at least under the experimental conditions employed, even in the bicyclic form. However, trans --> cis isomerization of the bicyclic peptide is accompanied by a switch from a well-defined conformation to an ensemble of possible conformations.  相似文献   

6.
The thioredoxin reductase active-site fragment H-Ala-Cys-Ala-Thr-Cys-Asp-Gly-Phe-OH [134-141], which is known for its high tendency to assume an almost identical conformation as in the intact enzyme, was backbone cyclized with the photoresponsive (4-amino)phenylazobenzoic acid (APB) to produce a monocyclic and disulfide-bridged bicyclic APB-peptide. Light-induced reversible cis/trans isomerization occurs at identical extents in both the linear and the two cyclic forms. Nuclear magnetic resonance conformational analysis clearly revealed that in the bicyclic APB-peptide both as a trans- and cis-azo-isomer the constraints imparted by the bicyclic structure do not allow the molecule to relax into a defined low energy conformation, thus making the molecule a frustrated system that flip-flops between multiple conformational states. Conversely, the monocyclic APB peptide folds into a well-defined lowest energy structure as a trans-azo-isomer, which upon photoisomerization to the cis-azo configuration relaxes into a less restricted conformational space. First femtosecond spectroscopic analysis of the dynamics of the photoreaction confirm a fast first phase on the femtosecond time scale related to the cis/trans isomerization of the azobenzene moiety followed by a slower phase in the picosecond time scale that involves an adjustment of the peptide backbone. Due to the well- defined photoresponsive two-state transition of this monocyclic peptide molecule, it represents a model system well suited for studying the ultrafast dynamics of conformational transitions by time-resolved spectroscopy.  相似文献   

7.
The affinity and selectivity of protein-protein interactions can be fine-tuned by varying the size, flexibility, and amino acid composition of involved surface loops. As a model for such surface loops, we study the conformational landscape of an octapeptide, whose flexibility is chemically steered by a covalent ring closure integrating an azobenzene dye into and by a disulfide bridge additionally constraining the peptide backbone. Because the covalently integrated azobenzene dyes can be switched by light between a bent cis state and an elongated trans state, six cyclic peptide models of strongly different flexibilities are obtained. The conformational states of these peptide models are sampled by NMR and by unconstrained molecular dynamics (MD) simulations. Prototypical conformations and the free-energy landscapes in the high-dimensional space spanned by the phi/psi angles at the peptide backbone are obtained by clustering techniques from the MD trajectories. Multiple open-loop conformations are shown to be predicted by MD particularly in the very flexible cases and are shown to comply with the NMR data despite the fact that such open-loop conformations are missing in the refined NMR structures.  相似文献   

8.
Cross-linking reagents based on an azobenzene core can be used to reversibly photoregulate secondary structure when introduced as intramolecular bridges in peptides and proteins. Photoisomerization of the azobenzene core in the trans to cis direction is triggered by photon absorption but isomerization from cis to trans occurs thermally as well as photochemically. The rate of the thermal process effectively determines the half-life of the cis form as well as the extent to which the trans form can be recovered. We designed and characterized a series of methanethiosulfonate (MTS)-bearing thiol-reactive azo-benzene-based cross-linkers. These cross-linkers are shown to permit photoregulation of helix content in a test peptide with half-lives for the cis conformation ranging from 11 s to 43 h at 25 degrees C. The cross-linkers described here thus broaden the range of reagents available for reversible photocontrol of peptide and protein conformation.  相似文献   

9.
Employing nonequilibrium molecular dynamics simulations, a comprehensive computational study of the photoinduced conformational dynamics of a photoswitchable bicyclic azobenzene octapeptide is presented. The calculation of time-dependent probability distributions along various global and local reaction coordinates reveals that the conformational rearrangement of the peptide is rather complex and occurs on at least four timescales: 1) After photoexcitation, the azobenzene unit of the molecule undergoes nonadiabatic photoisomerization within 0.2 ps. 2) On the picosecond timescale, the cooling (13 ps) and the stretching (14 ps) of the photoexcited peptide is observed. 3) Most reaction coordinates exhibit a 50-100 ps component reflecting a fast conformational rearrangement. 4) The 500-1000 ps component observed in the simulation accounts for the slow diffusion-controlled conformational equilibration of the system. The simulation of the photoinduced molecular processes is in remarkable agreement with time-resolved optical and infrared experiments, although the calculated cooling as well as the initial conformational rearrangements of the peptide appear to be somewhat too slow. Based on an ab initio parameterized vibrational Hamiltonian, the time-dependent amide I frequency shift is calculated. Both intramolecular and solvent-induced contributions to the frequency shift were found to change by < or = 2 cm(-1), in reasonable agreement with experiment. The potential of transient infrared spectra to characterize the conformational dynamics of peptides is discussed in some detail.  相似文献   

10.
11.
Combining an azobenzene chromophore with the bis-cysteinyl active-site sequence of the protein disulfide isomerase (PDI) we constructed a simple but promising model for allosteric conformational rearrangements. Paralleling cellular signaling events, an external trigger, here absorption of a photon, leads to a structural change in one part of the molecule, namely the azobenzene-based chromophore. The change in geometry translates to the effector site, in our case the peptide sequence, where it modifies covalent and nonbonded interactions and thus leads to a conformational rearrangement. NMR spectroscopy showed that the trans-azo and cis-azo isomer of the cyclic PDI peptide exhibit different, but well-defined structures when the two cystine residues form a disulfide bridge. Without this intramolecular cross-link conformationally more variable structural ensembles are obtained that again differ for the two isomeric states. Ultrafast UV/Vis spectroscopy confirmed that the rapid isomerization of azobenzene is not significantly slowed down when incorporated into the cyclic peptides, although the amplitudes of ballistic and diffusive pathways are changed. The observation that most of the energy of an absorbed photon is dissipated to the solvent in the first few picoseconds when the actual azo-isomerization takes place is important. The conformational rearrangement is weakly driven due to the absence of appreciable excess energy and can be described as biased diffusion similar to natural processes.  相似文献   

12.
Non-proline cis peptide bonds have been observed in numerous protein crystal structures even though the energetic barrier to this conformation is significant and no non-prolyl-cis/trans-isomerase has been identified to date. While some external factors, such as metal binding or co-factor interaction, have been identified that appear to induce cis/trans isomerization of non-proline peptide bonds, the intrinsic structural basis for their existence and the mechanism governing cis/trans isomerization in proteins remains poorly understood. Here, we report the crystal structure of a newly isolated neurotoxin, the scorpion alpha-like toxin Buthus martensii Karsch (BmK) M7, at 1.4A resolution. BmK M7 crystallizes as a dimer in which the identical non-proline peptide bond between residues 9 and 10 exists either in the cis conformation or as a mixture of cis and trans conformations in either monomer. We also determined the crystal structures of several mutants of BmK M1, a representative scorpion alpha-like toxin that contains an identical non-proline cis peptide bond as that observed in BmK M7, in which residues within or neighboring the cis peptide bond were altered. Substitution of an aspartic acid residue for lysine at residue 8 in the BmK M1 (K8D) mutant converted the cis form of the non-proline peptide bond 9-10 into the trans form, revealing an intramolecular switch for cis-to-trans isomerization. Cis/trans interconversion of the switch residue at position 8 appears to be sequence-dependent as the peptide bond between residues 9 and 10 retains its wild-type cis conformation in the BmK M1 (K8Q) mutant structure. The structural interconversion of the isomeric states of the BmK M1 non-proline cis peptide bond may relate to the conversion of the scorpion alpha-toxins subgroups.  相似文献   

13.
多肽和蛋白质中Xaa-Pro片段肽脯酰胺键顺反异构对其构象与功能有重要影响.设计合成了一系列模型多肽及其磷酸化多肽,并采用核磁共振实验和分子动力学模拟的方法,研究了所合成多肽中肽脯酰胺键的顺反异构化.结果表明,对脯氨酸之前的Xaa残基进行侧链O-磷酸化会极大地影响该顺反异构化过程,进而调节肽链构象.此外,磷酸化使得多肽顺式构象比例增加,且当磷酸基团不带负电荷时顺式构象所占比例最大.同时,分子动力学模拟所得结果与核磁共振实验相一致,包括最稳定构象和顺反构象统计分布.磷酸基团所带电荷及其空间位阻可能是影响这类磷酸化多肽构象变化的主要因素.  相似文献   

14.
The dermorphin-derived cyclic tetrapeptide analogues H-Tyr-c[D-Cys-Phe-Cys]NH(2) and H-Tyr-c[D-Cys-Phe-D-Cys]NH(2) are opioid agonists at the mu and delta receptor. To enhance the metabolic stability of these peptides, we replaced the disulfide bridge with a bis-methylene moiety. This was achieved by solid-phase synthesis of the linear precursor peptide containing allylglycine residues in place of the Cys residues, followed by ring-closing metathesis. In the case of the peptide with L-configuration in the 4-position both the cis and the trans isomer of the resulting olefinic peptides were formed, whereas the cis isomer only was obtained with the peptide having the D-configuration in position 4. Catalytic hydrogenation yielded the saturated -CH(2)-CH(2)- bridged peptides. In comparison with the cystine-containing parent peptides, all olefinic peptides showed significantly reduced mu and delta agonist potencies in the guinea pig ileum and mouse vas deferens assays. The -CH(2)-CH(2)-bridged peptide with l-configuration in the 4-position was equipotent with its cystine-containing parent in both assays, whereas the bis-methylene analogue with D-configuration in position 4 was 10-27-fold less potent compared to its parent. The effect of the disulfide replacements with the -CH=CH- and -CH(2)-CH(2)- moieties on the conformational behavior of these peptides was examined by theoretical conformational analysis which provided plausible explanations in terms of structural parameters for the observed changes in opioid activity.  相似文献   

15.
An azobenzene group containing beta-amino acid N-Fmoc-4-aminomethyl phenylazobenzoic acid was synthesized and with the exception of the C-terminal amino acid residue was substituted by solid-phase peptide synthesis into all positions of the FLAG sequence (DYKDDDDK), an octapeptide capable of specific interaction with the monoclonal antibody 4E11. The trans state of the beta-amino acid was thermodynamically more stable than the cis state. However, the molecule could be switched into the cis conformation by illumination at 340 nm. Peptides containing the artificial amino acid also became photoresponsive. In the absence of light, the spontaneous back-isomerization into the trans conformation of the photoresponsive was extremely slow (>8 h no significant increase in trans content). When illuminated with visible light (440 nm), the back-isomerization from the cis to the trans state was accelerated and occurred with a half-life of approximately 10 min. The cis form of the photopeptides was more hydrophilic than the trans form, as evidenced by differences in the retention time of the two isomeric forms in reversed-phase chromatography. Photopeptides that contained the intact sequences responsible for binding of the FLAG tag to the antibody, namely, the DYK motive at the N-terminus, showed binding to the antibody in both a dot blot immunoassay and in Biacore binding studies, albeit with lower affinity than the unmodified FLAG sequence. Peptides with a substitution in positions 4-6 showed differences in binding strength between the trans and the cis form in the Biacore studies, no such difference could be observed for the peptide with a substitution in position 7.  相似文献   

16.
Azobenzene derivatives can be used to reversibly photoregulate secondary structure when introduced as intramolecular bridges in peptides and proteins. Here we report the design, synthesis, and characterization of a disubstituted N,N-dialkyl azobenzene derivative that absorbs near 480 nm in aqueous solution and relaxes with a half-life of approximately 50 ms at room temperature. The wavelength of maximum absorbance and the rate of thermal relaxation are solvent-dependent. An increase in the percentage of organic solvent leads, in general, to a blue shift in the absorbance maximum and a slowing of the relaxation rate. In accordance with the design, the thermal relaxation of the azobenzene cross-linker from cis to trans causes an increase in the helix content of one peptide where the linker is attached via cysteine residues spaced at i, i + 11 positions and a decrease in helix content of another peptide with cysteine residues spaced at i, i + 7. This cross-linker design thus expands the possibilities for fast photocontrol of peptide and protein structure.  相似文献   

17.
18.
Photoactive yellow protein (PYP) is a bacterial photoreceptor containing a 4-hydroxycinnamyl chromophore. Photoexcitation of PYP triggers a photocycle that involves at least two intermediate states: an early red-shifted PYP(L) intermediate and a long-lived blue-shifted PYP(M) intermediate. In this study, we have explored the active site structures of these intermediates by resonance Raman spectroscopy. Quantum chemical calculations based on a density functional theory are also performed to simulate the observed spectra. The obtained structure of the chromophore in PYP(L) has cis configuration and no hydrogen bond at the carbonyl oxygen. In PYP(M), the cis chromophore is protonated at the phenolic oxygen and forms the hydrogen bond at the carbonyl group. These results allow us to propose structural changes of the chromophore during the photocycle of PYP. The chromophore photoisomerizes from trans to cis configuration by flipping the carbonyl group to form PYP(L) with minimal perturbation of the tightly packed protein interior. Subsequent conversion to PYP(M) involves protonation on the phenolic oxygen, followed by rotation of the chromophore as a whole. This large motion of the chromophore is potentially correlated with the succeeding global conformational changes in the protein, which ultimately leads to transduction of a biological signal.  相似文献   

19.
A monoclonal antibody (Z1H01) for an oligopeptide carrying an azobenzene group, was prepared under conditions where the azobenzene group is in the trans form. The antibody bound the hapten peptide effectively when the hapten peptide is in the trans form (K = 5 x 10(7) M-1), but the antibody released the hapten under irradiation with UV light where the hapten is in the cis form. The antibody bound the hapten again, when the hapten reverted to the trans form after irradiation with visible light.  相似文献   

20.
Although the vast majority of peptide bonds in folded proteins are found in the trans conformation, a small percentage are found in the less energetically favorable cis conformation. Though the mechanism of cis peptide bond formation remains unknown, the role of local aromatics has been emphasized in the literature. This paper presents results from a comprehensive statistical analysis of both the local and nonlocal (i.e., tertiary) environment around cis peptides. In addition to an increased frequency of aromatic residues in the local environment around cis peptides, a number of nonlocal differences in protein secondary and tertiary structure between cis and trans peptides are found: (i) coil regions containing cis peptides are almost twice as long as those without cis peptides and include more Tyr and Pro residues; (ii) cis peptides occur with high frequencies in coil regions near large beta-structures; (iii) there is a nonlocal enrichment of Cys, His, Tyr, and Ser in the tertiary environment surrounding cis peptides when compared to trans peptides; and (iv) on average, cis peptides make fewer medium-range and more long-range contacts than trans peptides do. On the basis of these observations, it is concluded that nonlocal factors play a significant role in cis peptide formation, which has not been fully appreciated previously. An autocatalytic model for cis peptide formation is discussed as are consequences for protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号