首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
By crossing TG.AC v-Ha-ras and K6/ODC transgenic mice, we found previously that an activated ras and follicular ornithine decarboxylase (ODC) overexpression cooperate to generate spontaneous tumors in the skin. Cellular proliferation was dramatically increased in the K6/ODC transgenic skin, as evidenced by elevated proliferating cell nuclear antigen and Ki67 expression compared with nontransgenic littermates. Keratinocytes isolated from transgenic skin also displayed increased clonal growth. Paradoxically, expression of the growth inhibition-associated proteins p53, p21Waf1, p27Klp1, and Bax was increased with ODC overexpression in the skin. ODC overexpression did not affect cyclin D/cyclin-dependent kinase 4 (Cdk4)-dependent phosphorylation of retinoblastoma protein but stimulated cyclin E/Cdk2 and cyclin A/Cdk2-associated kinase activity, with minimal effect on the levels of these proteins. Thus, ODC/polyamine-induced activation of cyclin E/Cdk2 and cyclin A/Cdk2-associated kinase activity may cooperate with the ras induction of cyclin D/Cdk4/6-associated retinoblastoma protein phosphorylation to not only stimulate proliferation but ultimately contribute to tumor development.  相似文献   

3.
Polyamines are required for maintenance of intestinal epithelial integrity, and a decrease in cellular polyamines increases the cytoplasmic levels of RNA-binding protein HuR stabilizing p53 and nucleophosmin mRNAs, thus inhibiting IEC (intestinal epithelial cell) proliferation. The AMPK (AMP-activated protein kinase), an enzyme involved in responding to metabolic stress, was recently found to be implicated in regulating the nuclear import of HuR. Here, we provide evidence showing that polyamines modulate subcellular localization of HuR through AMPK-regulated phosphorylation and acetylation of Impalpha1 (importin alpha1) in IECs. Decreased levels of cellular polyamines as a result of inhibiting ODC (ornithine decarboxylase) with DFMO (D,L-alpha-difluoromethylornithine) repressed AMPK activity and reduced Impalpha1 levels, whereas increased levels of polyamines as a result of ODC overexpression induced both AMPK and Impalpha1 levels. AMPK activation by overexpression of the AMPK gene increased Impalpha1 but reduced the cytoplasmic levels of HuR in control and polyamine-deficient cells. IECs overexpressing wild-type Impalpha1 exhibited a decrease in cytoplasmic HuR abundance, while cells overexpressing Impalpha1 proteins bearing K22R (lacking acetylation site), S105A (lacking phosphorylation site) or K22R/S105A (lacking both sites) mutations displayed increased levels of cytoplasmic HuR. Ectopic expression of these Impalpha1 mutants also prevented the increased levels of cytoplasmic HuR following polyamine depletion. These results indicate that polyamine-mediated AMPK activation triggers HuR nuclear import through phosphorylation and acetylation of Impalpha1 in IECs and that polyamine depletion increases cytoplasmic levels of HuR as a result of inactivation of the AMPK-driven Impalpha1 pathway.  相似文献   

4.
Protein B23 is a multifunctional nucleolar protein whose molecular chaperone activity is proposed to play role in ribosome assembly. Previous studies (Szebeni, A., and Olson, M. O. J. (1999) Protein Sci. 8, 905-912) showed that protein B23 has several characteristics typical of molecular chaperones, including anti-aggregation activity, promoting the renaturation of denatured proteins, and preferential binding to denatured substrates. However, until now there has been no proposed mechanism for release of a bound substrate. Protein B23 can be phosphorylated by protein kinase CK2 (CK2) in a segment required for chaperone activity. The presence of bound substrate enhanced the rate of CK2 phosphorylation of protein B23 by 2-3-fold, and this enhancement was dependent on a nonpolar region in its N-terminal end. Formation of a complex between B23 and chaperone test substrates (rhodanese or citrate synthase) was inhibited by CK2 phosphorylation. Furthermore, CK2 phosphorylation of a previously formed B23-substrate complex promoted its dissociation. The dissociation of complexes between B23 and the human immunodeficiency virus-Rev protein required both CK2 phosphorylation and competition with a Rev nuclear localization signal peptide, suggesting that Rev binds B23 at two separate sites. These studies suggest that unlike many molecular chaperones, which directly hydrolyze ATP, substrate release by protein B23 is dependent on its phosphorylation by CK2.  相似文献   

5.
6.
We have found that overexpression of human ornithine decarboxylase (ODC) induces cell transformation in NIH 3T3 and Rat-1 cells (M. Auvinen, A. Paasinen, L. C. Andersson, and E. Hölttä, Nature (London) 360:355-358, 1992). The ODC-transformed cells display increased levels of tyrosine phosphorylation, in particular of a cluster of 130-kDa proteins. Here we show that one of the proteins with enhanced levels of tyrosine phosphorylation in ODC-overexpressing cells is the previously described p130 substrate of pp60v-src, known to associate also with v-Crk and designated p130CAS. We also studied the role of protein tyrosine phosphorylation in the ODC-induced cell transformation by exposing the cells to herbimycin A, a potent inhibitor of Src-family kinases, and to other inhibitors of protein tyrosine kinases. Treatment with the inhibitors reversed the phenotype of ODC-transformed cells to normal, with an organized, filamentous actin cytoskeleton. Coincidentally, the tyrosine hyperphosphorylation of p130 was markedly reduced, while the level of activity of ODC remained highly elevated. A similar reduction in pp130 phosphorylation and reversion of morphology by herbimycin A were observed in v-src- and c-Ha-ras-transformed cells. In addition, we show that expression of antisense mRNA for p130CAS resulted in reversion of the transformed phenotype of all these cell lines. An increased level of tyrosine kinase activity, not caused by c-Src or c-Abl, was further detected in the cytoplasmic fraction of ODC-transformed cells. Preliminary characteristics of this kinase are shown. These data indicate that p130CAS is involved in cell transformation by ODC, c-ras, and v-src oncogenes, raise the intriguing possibility that p130CAS may be generally required for transformation, and imply that there is at least one protein tyrosine kinase downstream of ODC that is instrumental for cell transformation.  相似文献   

7.
Intracellular polyamine synthesis is regulated by the enzyme ornithine decarboxylase (ODC), and its inhibition by -difluromethylornithine (DFMO), confers resistance to apoptosis. We have previously shown that DFMO leads to the inhibition of de novo polyamine synthesis, which in turn rapidly activates Src, STAT3 and NF-κB via integrin β3 in intestinal epithelial cells. One mechanism to explain these effects involves the activation of upstream growth factor receptors, such as the epidermal growth factor receptor (EGFR). We therefore hypothesized that EGFR phosphorylation regulates the early response to polyamine depletion. DFMO increased EGFR phosphorylation on tyrosine residues 1173 (pY1173) and 845 (pY845) within 5 min. Phosphorylation declined after 10 min and was prevented by the addition of exogenous putrescine to DFMO containing medium. Phosphorylation of EGFR was concomitant with the activation of ERK1/2. Pretreatment with either DFMO or EGF for 1 h protected cells from TNF-/CHX-induced apoptosis. Exogenous addition of polyamines prevented the protective effect of DFMO. In addition, inhibition of integrin β3 activity (with RGDS), Src activity (with PP2), or EGFR kinase activity (with AG1478), increased basal apoptosis and prevented protection conferred by either DFMO or EGF. Polyamine depletion failed to protect B82L fibroblasts lacking the EGFR (PRN) and PRN cells expressing either a kinase dead EGFR (K721A) or an EGFR (Y845F) mutant lacking the Src phosphorylation site. Conversely, expression of WT-EGFR (WT) restored the protective effect of polyamine depletion. Fibronectin activated the EGFR, Src, ERKs and protected cells from apoptosis. Taken together, our data indicate an essential role of EGFR kinase activity in MEK/ERK-mediated protection, which synergizes with integrin β3 leading to Src-mediated protective responses in polyamine depleted cells.  相似文献   

8.
Onset of cell proliferation is associated with enhanced turnover of the polyamines putrescine, spermidine, and spermine, particularly evident in the massive increase in the activity of the rate-limiting enzyme in their production, ornithine decarboxylase (ODC). The physiological functions of these polyamines, however, have remained unclear. Here we report that treatment of LSTRA cells for 2-18 h with alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, decreased the amount of phosphotyrosine in several cellular substrates including the T cell protein tyrosine kinase p56lck. No reductions in the amount of p56lck, overall synthesis of protein and DNA, or cell viability were observed until much later. DFMO did not affect the catalytic activity of p56lck in vitro and the activity of p56lck immunoprecipitated from DFMO-treated cells was unaltered. Addition of putrescine, the reaction product of ODC, completely reversed the effect of DFMO on tyrosine phosphorylation. Finally, we provide evidence that polyamines reduce the activity of cellular protein tyrosine phosphatases toward endogenous substrates. Our results suggest that polyamines may influence the extent of tyrosine phosphorylation during cell proliferation and malignant transformation, perhaps by modulating the rate of dephosphorylation of specific target proteins.  相似文献   

9.
Polyamines (PA) have been shown to be critical mediators of estradiol-induced breast cancer cell proliferation. This finding suggests that constitutive activation of the PA pathway may promote tumor progression, possibly leading to hormone independence. To test this hypothesis, we transfected hormone-responsive MCF-7 breast cancer cells with a complementary DNA coding for ornithine-decarboxylase (ODC), the first rate-limiting enzyme in PA biosynthesis. Marked ODC over-expression observed in stably transfected clones was associated with a selective increase in cellular putrescine content, while spermidine and spermine levels were not altered. ODC-overexpressing MCF-7 cells were resistant to the antiproliferative effects of low but not high concentrations of the enzyme inhibitor, α-difluoromethylornithine. In agreement with our hypothesis, sensitivity to the growth-promoting action of estradiol was reduced by approximately one third (P < 0.001) in ODC-overexpressing MCF-7 cells compared with vector-only transfected clones. Basal growth under anchorage-dependent conditions was only marginally increased by ODC overexpression (P = 0.048), while clonogenicity in soft agar was actually reduced. These data suggest that activation of PA biosynthesis may contribute in part to the acquisition of estrogen independence by breast cancer cells. Since only putrescine content was increased as a result of ODC overexpression, these data may underestimate the overall influence of the PA pathway on breast cancer phenotype. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis, becomes upregulated during cell proliferation and transformation. Here we show that intact ODC activity is needed for the acquisition of a transformed phenotype in rat 2R cells infected with a temperature-sensitive mutant of Rous sarcoma virus. Addition of the ODC inhibitor alpha-difluoromethyl ornithine (DFMO) to the cells (in polyamine-free medium) before shift to permissive temperature prevented the depolymerization of filamentous actin and morphological transformation. Polyamine supplementation restored the transforming potential of pp60v-src. DFMO did not interfere with the expression of pp60v-src or its in vitro tyrosine kinase activity. The tyrosine phosphorylation of most cellular proteins, including ras GAP, did not either display clear temperature- or DFMO-sensitive changes. A marked increase was, however, observed in the tyrosine phosphorylation of phosphatidylinositol 3-kinase and proteins of 33 and 36 kD upon the temperature shift, and these hyperphosphorylations were partially inhibited by DFMO. A DFMO-sensitive increase was also found in the total phosphorylation of calpactins I and II. The well-documented association of GAP with the phosphotyrosine-containing proteins p190 and p62 did not correlate with transformation, but a novel 42-kD tyrosine phosphorylated protein was complexed with GAP in a polyamine- and transformation-dependent manner. Further, tyrosine phosphorylated proteins of 130, 80/85, and 36 kD were found to coimmunoprecipitate with pp60v-src in a transformation-related manner. Altogether, this model offers a tool for sorting out the protein phosphorylations and associations critical for the transformed phenotype triggered by pp60v- src, and implicates a pivotal role for polyamines in cell transformation.  相似文献   

11.
Prolactin has more than 300 separate functions including affecting mammary growth, differentiation, secretion and anti-apoptosis. In the previous studies, prolactin induced Bcl-2 expression to prevent apoptosis and also provoked the activity of ornithine decarboxylase (ODC). Our previous data showed that ODC overexpression upregulates Bcl-2 and prevents tumor necrosis factor alpha (TNF-α)- and methotrexate (MTX)-induced apoptosis. Here, we further investigate whether prolactin prevents MTX-induced apoptosis through inducing ODC activity and the relationship between ODC and Bcl-2 upon prolactin stimulation. Prolactin prevented MTX-induced apoptosis in a dose-dependent manner in HL-60 cells. Following prolactin stimulation, ODC enzyme activity also shows an increase in a dose-dependent manner, expressing its maximum level at 3 h, and rapidly declining thereafter. Prolactin-induced ODC activity is completely blocked by a protein kinase C delta (PKCδ) inhibitor, rottlerin. However, there are no changes in the expressions of ODC mRNA and protein level after prolactin stimulus. It indicates that prolactin may induce ODC activity through the PCKδ pathway. Besides, Bcl-2 expresses within 1 h of prolactin treatment and this initiating effect of prolactin is not inhibited by alpha-difluoromethylornithine (DFMO). However, Bcl-2 is further enhanced following prolactin stimulation for 4 h and this enhancement is blocked by DFMO. Bcl-2 has no effect on ODC activity and protein levels, but ODC upregulates Bcl-2, which is inhibited by DFMO. Overall, there are two different forms of prolactin effect, it induces Bcl-2 primarily, and following this it stimulates ODC activity. Consequently induced ODC activity further enhances the expression of Bcl-2. The anti-apoptotic effect of prolactin is diminished by DFMO and recovered by putrescine. Obviously, ODC activity is one basis for the anti-apoptotic mechanisms of prolactin. A Bcl-2 inhibitor, HA14-1, together with DFMO, completely blocks the anti-apoptotic effects of prolactin. These results suggest that increasing ODC activity is another way of prolactin preventing MTX-induced apoptosis and that this induction of ODC activity enhances the expression of Bcl-2 strongly enough to bring about the anti-apoptotic function.  相似文献   

12.
Protein kinase CK2 is a ubiquitous protein serine/threonine kinase that is involved in cell growth and proliferation as well as suppression of apoptosis. Several studies have suggested that the kinase plays a role in cell cycle progression; however, changes in enzyme activity during phases of cell cycle have not been detected. Nuclear matrix is a key locus for CK2 signaling in the nucleus. We therefore examined CK2 signaling to the nuclear matrix in distinct phases of cell cycle by employing synchronized ALVA-41 prostate cancer cells. Removal of serum from the culture medium resulted in G0/G1 arrest, and a reduction in the nuclear matrix-associated CK2 activity which was rapidly reversed on addition of serum. Arresting the cells in G(0)/G(1) phase with hydroxyurea and subsequent release to S phase by serum gave similar results. Cells arrested in the G(2)/M phase by treatment with nocodazole demonstrated an extensive reduction in the nuclear matrix-associated CK2 which was reversed rapidly on addition of serum. Changes in the immunoreactive CK2 protein were concordant with the activity data reflecting a dynamic trafficking of the kinase in distinct phases of cell cycle. Under the same conditions, CK2 activity in total cellular lysate remained essentially unaltered. These results provide the first direct evidence of discrete modulations of CK2 in the nuclear matrix during the cell cycle progression. Inducible overexpression of CK2 in CHO cells yielded only a modest increase in CK2 activity even though a significant increase in expression was apparent at the level of CK2 alpha-specific message. Stably transfected ALVA-41 cells, however, did not show a significant change in CK2 levels despite increased expression at the message level. Not surprisingly, both types of the stably transfected cells failed to show any alteration in cell cycle progression. Distribution of the CK2 activity in the cytosolic versus nuclear matrix fractions in normal cells appears to be different from that in the cancer cells such that the ratio of nuclear matrix to cytosolic activity is much higher in the latter. Considering that nuclear matrix is central to several nuclear functions, this pattern of intracellular distribution of CK2 may have implications for its role in the oncogenic process. Published 2003 Wiley-Liss, Inc.  相似文献   

13.
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis, has paradoxical roles in apoptosis. Our published papers show overexpression of ODC prevents the apoptosis induced by many cytotoxic drugs. Thapsigargin (TG) is an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase (SERCA) pumps and causes ER stress-induced apoptosis. We used ODC overexpressing cell lines to examine whether overexpression of ODC inhibits TG-induced apoptosis. Our results indicated overexpression of ODC attenuated TG-induced apoptosis. Overexpression of ODC blocked procaspse-4 cleavage and phosphorylation of protein kinase-like ER-resident kinase (PERK), triggered by TG. It also attenuated the increase in CAAT/enhancer binding protein homologous protein (CHOP). Cells with overexpressed ODC had greater Bcl-2 expression. Overexpression of ODC preserved the expression of Bcl-2, inhibited the increase in Bak and stabilized mitochondrial membrane potential without the influences of TG. Cytochrome c release and down-stream caspase activation were blocked. That is, overexpression of ODC inhibits the mitochondria-mediated apoptotic pathway, induced by TG. Finally, overexpression of ODC maintains the protein and mRNA expression of SERCA. In conclusion, overexpression of ODC suppresses TG-induced apoptosis by blocking caspase-4 activation and PERK phosphorylation, attenuating CHOP expression and inhibiting the mitochondria-mediated apoptotic pathway.  相似文献   

14.
This study evaluates the regulation of casein kinase II (CK II) activity in resting B cells induced to enter the cell cycle. The induction of B cell cycle progression PMA and ionomycin results in an oscillatory expression of CK II. This kinase activity is also elicited after direct physical interaction between B cells and activated, fixed Th cells, indicating that the increase seen in CK II activity is probably associated with the delivery of the competence-inducing signal to resting B cells. The selective inhibition of ornithine decarboxylase (ODC), the rate-limiting enzyme for polyamine biosynthesis, during PMA and ionomycin-induction of B cell cycle progression, inhibits the expression of CK II activity. The addition of polyamines to cytosolic preparations recovered from cells in which ODC is inhibited results in the appearance of CK II activity, showing that the ODC inhibitor does not directly inhibit the kinase. The treatment of B cells with cycloheximide results in the appearance of CK II activity within 15 min, and this induction is partially explainable by a cycloheximide-elicited increase in cellular levels of polyamines. The artificial elevation of cellular levels of cAMP simultaneous with the addition of PMA and ionomycin results in a 150 to 200% increase in detectable CK II levels, suggesting that the cAMP-dependent signaling cascade may participate during the early regulation of CK II. In contrast, the inhibition of protein kinase C does not adversely influence the early expression of CK II, while actually enhancing kinase activity by 18 h poststimulation.  相似文献   

15.
16.
Starting from the finding that, for neuronal cells, the nuclear-membrane-associated protein kinase C (PKC) is the so-called 'membrane inserted', constitutively active form, we attempted to identify substrates of this nuclear PKC. For this purpose, nuclear membranes and other subcellular fractions were prepared from bovine brain, and in-vitro phosphorylation was performed. Several nuclear membrane proteins were found, the phosphorylation of which was inhibited by specific PKC inhibitors and effectively catalyzed by added PKC. Combining the methods of two-dimensional gel electrophoresis, in-situ digestion, reverse-phase HPLC and microsequencing, two of these nuclear PKC substrates were identified; the known PKC substrate Lamin B2, which serves as a control of the approach and the nucleolar protein B23. Our data suggest, that, for B23, Ser225 is a site of phosphorylation by PKC.  相似文献   

17.
The somatomedins are potent stimulators of proliferation and differentiation of cultured myoblasts. In studies on the mechanism(s) of these actions, we have measured the activities of ornithine decarboxylase (ODC), an enzyme associated with rapid cell proliferation, and creatine kinase (CK), a biochemical marker for muscle differentiation, after treatment of L6 myoblast cultures with Multiplication Stimulating Activity (MSA), a member of the somatomedin family of insulinlike growth factors. ODC levels reached a peak 24 hours after MSA addition (before any detectable differentiation of the myoblasts) and then decreased as differentiation commenced and CK activity increased. Addition of alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, caused a dramatic decrease in differentiation. Measurement of 3H-thymidine incorporation, DNA content, and cell number established that the effect of DFMO on differentiation was not a simple consequence of its antiproliferative actions. Cellular levels of putrescine and spermidine (but not spermine) decreased substantially following addition of DFMO to the cultures. The inhibitory effects of DFMO were abolished upon addition of exogenous polyamines to the medium. However, addition of polyamines in the absence of MSA or DFMO did not mimic the stimulation of differentiation by MSA. We conclude that polyamines play an essential role in the stimulation of L6 myoblast differentiation by somatomedins, but they are not sufficient to effect this stimulation.  相似文献   

18.
Ornithine decarboxylase (ODC) is extremely unstable in mammalian cells. This unusual characteristic facilitates rapid fluctuations in the activity of this enzyme in response to variations in its biosynthesis. Unfortunately, very little is known about the mechanism or regulation of this ODC-specific proteolytic pathway. This study describes the production and characterization of a variant of the rat hepatoma HTC cell line that is strikingly deficient in this pathway. This cell variant was induced by selection for growth in stepwise increasing concentrations (up to 10 mM) of the irreversible ODC inhibitor, alpha-difluoromethylornithine (DFMO). Resistance to this inhibitor appears to result from a combination of elevated (10X) ODC biosynthesis and inhibited degradation, producing greater than a 2000-fold increase in the level of ODC protein. In these variant cells (DH23b) inhibition of protein synthesis by cycloheximide did not result in rapid loss of enzyme activity or ODC protein determined by radioimmunoassay. Pulse-chase studies with [35S]methionine confirmed that this enzyme was not preferentially degraded, even when spermidine was added to the media. ODC purified from the variant cells was found to be identical to the control cell enzyme in size, isoelectric point, substrate binding kinetics, and sensitivity to the inhibitor DFMO. Also, as in the control cells, a major fraction of the ODC molecules extracted from DH23b cells was shown to be phosphorylated on a serine residue. The inability to detect physical or kinetic differences between the parent and the variant cell ODC suggests that the unusual stability of ODC in this cell is associated with a defect in a cellular mechanism for ODC-specific degradation.  相似文献   

19.
Heat shock mediated modulation of protein kinase CK2 in the nuclear matrix   总被引:1,自引:0,他引:1  
Nuclear matrix, a key structure in the nuclear framework, appears to be a particularly responsive target during heat shock treatment of cells. We have previously shown that nuclear matrix is a preferential target for protein kinase CK2 signaling in the nucleus. The levels of CK2 in the nuclear matrix undergo dynamic changes in response to altered growth status in the cell. Here, we have demonstrated that CK2 targeting to the nuclear matrix is profoundly influenced by treatment of the cells to temperatures higher than 37 degrees C. Rapid increase in the nuclear matrix association of CK2 is observed when cells are placed at temperatures of 41 and 45 degrees C. This effect at 45 degrees C was higher than at 41 degrees C, and was time-dependent. Also, different cell lines behaved in a qualitatively similar manner though the quantitative responses differed. The modulations in the nuclear matrix associated CK2 in response to heat shock appear to be due to trafficking of the enzyme between cytosolic and nuclear compartments. In addition, it was noted that isolated nuclei subjected to heat shock also responded by a shuttling of the intrinsic CK2 to the nuclear matrix compartment. These results suggest that modulations in CK2 in the nuclear compartment in response to the heat stress occur not only by a translocation of the enzyme from the cytoplasmic compartment to the nuclear compartment, but also that there is a redistribution of the kinase within the nuclear compartment resulting in a preferential association with the nuclear matrix. The results support the notion that CK2 association with the nuclear matrix in response to heat shock may serve a protective role in the cell response to stress.  相似文献   

20.
A rabbit antiserum against highly purified casein kinase II from mouse tumor cells was used for immunolocalization of the enzyme in fixed, permeabilized mouse cells. Casein kinase II was highly accumulated in nucleoli compared to the extra-nucleolar space of the nucleus or to the cytoplasma. Casein kinase II samples highly purified from the cytoplasma, from the extra-nucleolar fraction of the nucleus or from nucleoli exhibited no differences with respect to structure and function. All samples originally had an alpha 2 beta 2 structure (alpha, 42 kDa; beta, 24 kDa) showing formation of the alpha'-chain (36 kDa) only in the late steps of purification. The isoelectric point of the alpha-chain of all three samples was pH 7.7 and that of the beta-chain was pH 6.4-6.6. Using ATP or GTP, all three casein kinase II samples gave the same results of maximum phosphorylation of purified nucleolar marker phosphoproteins pp105/C23, pp135 and B23, yielding pp135 as one of the most highly phosphorylated proteins with an incorporation of about 75 phosphate groups per molecule pp135. Studies on optimum conditions of phosphorylation of nucleolar phosphoproteins by casein kinase II revealed that each of the protein substrates individually responded to alterations of assay parameters such as pH, magnesium ion and sodium chloride concentrations indicating that predominantly individual structural criteria were responsible for optimum phosphorylation. The determination of the apparent Km of casein kinase II for purified nucleolar phosphoproteins yielded values of 0.15 microM (pp105/C23), 0.1 microM (pp135) and 1.0 microM (B23) identifying them as high-affinity substrates of casein kinase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号