首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Process analytical technology (PAT) tools such as Raman Spectroscopy have become established tools for real time measurement of CHO cell bioreactor process variables and are aligned with the QbD approach to manufacturing. These tools can have a significant impact on process development if adopted early, creating an end-to-end PAT/QbD focused process. This study assessed the impact of Raman based feedback control on early and late phase development bioreactors by using a Raman based PLS model and PAT management system to control glucose in two CHO cell line bioreactor processes. The impact was then compared to bioreactor processes which used manual bolus fed methods for glucose feed delivery. Process improvements were observed in terms of overall bioreactor health, product output and product quality. Raman controlled batches for Cell Line 1 showed a reduction in glycation of 43.4% and 57.9%, respectively. Cell Line 2 batches with Raman based feedback control showed an improved growth profile with higher VCD and viability and a resulting 25% increase in overall product titer with an improved glycation profile. The results presented here demonstrate that Raman spectroscopy can be used in both early and late-stage process development and design for consistent and controlled glucose feed delivery.  相似文献   

2.
The Food and Drug Administration (FDA) initiative of Process Analytical Technology (PAT) encourages the monitoring of biopharmaceutical manufacturing processes by innovative solutions. Raman spectroscopy and the chemometric modeling tool partial least squares (PLS) have been applied to this aim for monitoring cell culture process variables. This study compares the chemometric modeling methods of Support Vector Machine radial (SVMr), Random Forests (RF), and Cubist to the commonly used linear PLS model for predicting cell culture components—glucose, lactate, and ammonia. This research is performed to assess whether the use of PLS as standard practice is justified for chemometric modeling of Raman spectroscopy and cell culture data. Model development data from five small-scale bioreactors (2 × 1 L and 3 × 5 L) using two Chinese hamster ovary (CHO) cell lines were used to predict against a manufacturing scale bioreactor (2,000 L). Analysis demonstrated that Cubist predictive models were better for average performance over PLS, SVMr, and RF for glucose, lactate, and ammonia. The root mean square error of prediction (RMSEP) of Cubist modeling was acceptable for the process concentration ranges of glucose (1.437 mM), lactate (2.0 mM), and ammonia (0.819 mM). Interpretation of variable importance (VI) results theorizes the potential advantages of Cubist modeling in avoiding interference of Raman spectral peaks. Predictors/Raman wavenumbers (cm−1) of interest for individual variables are X1139–X1141 for glucose, X846–X849 for lactate, and X2941–X2943 for ammonia. These results demonstrate that other beneficial chemometric models are available for use in monitoring cell culture with Raman spectroscopy.  相似文献   

3.
4.
The glycosylation of therapeutic monoclonal antibodies (mAbs), a known critical quality attribute, is often greatly modified during the production process by animal cells. It is essential for biopharmaceutical industries to monitor and control this glycosylation. However, current glycosylation characterization techniques involve time‐ and labor‐intensive analyses, often carried out at the end of the culture when the product is already synthesized. This study proposes a novel methodology for real‐time monitoring of antibody glycosylation site occupancy using Raman spectroscopy. It was first observed in CHO cell batch culture that when low nutrient concentrations were reached, a decrease in mAb glycosylation was induced, which made it essential to rapidly detect this loss of product quality. By combining in situ Raman spectroscopy with chemometric tools, efficient prediction models were then developed for both glycosylated and nonglycosylated mAbs. By comparing variable importance in projection profiles of the prediction models, it was confirmed that Raman spectroscopy is a powerful method to distinguish extremely similar molecules, despite the high complexity of the culture medium. Finally, the Raman prediction models were used to monitor batch and feed‐harvest cultures in situ. For the first time, it was demonstrated that the concentrations of glycosylated and nonglycosylated mAbs could be successfully and simultaneously estimated in real time with high accuracy, including their sudden variations due to medium exchanges. Raman spectroscopy can thus be considered as a promising PAT tool for feedback process control dedicated to on‐line optimization of mAb quality. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:486–493, 2018  相似文献   

5.
Riley BS  Li X 《AAPS PharmSciTech》2011,12(1):114-118
Quality by design (QbD) and process analytical technology (PAT) have become priorities for the Center for Drug Evaluation and Research (CDER) at the Food and Drug Administration (FDA). Numerous recent initiatives within CDER and FDA have had the objective of encouraging the pharmaceutical industry to utilize QbD and PAT in their product development and manufacturing processes. Although sterile products may be a minority compared to non-sterile dosage forms (e.g., solid orals), their absolute requirement for sterility make design and control of the manufacturing processes extremely critical. This emphasis on the manufacturing process makes the sterile drug product an obvious target for QbD and PAT. Although the FDA encourages QbD submissions, the utilization of QbD and PAT for sterile products so far is still limited. This paper will examine the present state of QbD and PAT for sterile products and review some examples currently in use. Additional potential applications of QbD and PAT for sterile product development and manufacturing will also be discussed.  相似文献   

6.
Continuous biopharmaceutical manufacturing is currently a field of intense research due to its potential to make the entire production process more optimal for the modern, ever-evolving biopharmaceutical market. Compared to traditional batch manufacturing, continuous bioprocessing is more efficient, adjustable, and sustainable and has reduced capital costs. However, despite its clear advantages, continuous bioprocessing is yet to be widely adopted in commercial manufacturing. This article provides an overview of the technological roadblocks for extensive adoptions and points out the recent advances that could help overcome them. In total, three key areas for improvement are identified: Quality by Design (QbD) implementation, integration of upstream and downstream technologies, and data and knowledge management. First, the challenges to QbD implementation are explored. Specifically, process control, process analytical technology (PAT), critical process parameter (CPP) identification, and mathematical models for bioprocess control and design are recognized as crucial for successful QbD realizations. Next, the difficulties of end-to-end process integration are examined, with a particular emphasis on downstream processing. Finally, the problem of data and knowledge management and its potential solutions are outlined where ontologies and data standards are pointed out as key drivers of progress.  相似文献   

7.
The goal of quality by design (QbD) in cell culture manufacturing is to develop manufacturing processes which deliver products with consistent critical quality attributes (CQAs). QbD approaches can lead to better process understanding through the use of process parameter risk ranking and statistical design of experiments (DOE). The QbD process starts with an analysis of process parameter risk with respect to CQAs and key performance indicators (KPIs). Initial DOE study designs and their factor test ranges are based on the outcomes of the process parameter risk ranking exercises. Initial DOE studies screen factors for significant influences on CQAs as well as characterize responses for process KPIs. In the case study provided here, multifactor process characterization studies using a scale-down model resulted in significant variation in charge heterogeneity of a monoclonal antibody (MAb) as measured by ion-exchange chromatography (IEC). Iterative DOE studies, using both screening and response surface designs, were used to narrow the operating parameter ranges so that charge heterogeneity could be controlled to an acceptable level. The data from the DOE studies were used to predict worst-case conditions, which were then verified by testing at those conditions. Using the approach described here, multivariate process parameter ranges were identified that yield acceptable CQA levels and that still provide operational flexibility for manufacturing.  相似文献   

8.
In situ Raman spectroscopy was employed for real‐time monitoring of simultaneous saccharification and fermentation (SSF) of corn mash by an industrial strain of Saccharomyces cerevisiae. An accurate univariate calibration model for ethanol was developed based on the very strong 883 cm?1 C–C stretching band. Multivariate partial least squares (PLS) calibration models for total starch, dextrins, maltotriose, maltose, glucose, and ethanol were developed using data from eight batch fermentations and validated using predictions for a separate batch. The starch, ethanol, and dextrins models showed significant prediction improvement when the calibration data were divided into separate high‐ and low‐concentration sets. Collinearity between the ethanol and starch models was avoided by excluding regions containing strong ethanol peaks from the starch model and, conversely, excluding regions containing strong saccharide peaks from the ethanol model. The two‐set calibration models for starch (R2 = 0.998, percent error = 2.5%) and ethanol (R2 = 0.999, percent error = 2.1%) provide more accurate predictions than any previously published spectroscopic models. Glucose, maltose, and maltotriose are modeled to accuracy comparable to previous work on less complex fermentation processes. Our results demonstrate that Raman spectroscopy is capable of real time in situ monitoring of a complex industrial biomass fermentation. To our knowledge, this is the first PLS‐based chemometric modeling of corn mash fermentation under typical industrial conditions, and the first Raman‐based monitoring of a fermentation process with glucose, oligosaccharides and polysaccharides present. Biotechnol. Bioeng. 2013; 110: 1654–1662. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Process analytical technology (PAT) is an initiative from the US FDA combining analytical and statistical tools to improve manufacturing operations and ensure regulatory compliance. This work describes the use of a continuous monitoring system for a protein refolding reaction to provide consistency in product quality and process performance across batches. A small‐scale bioreactor (3 L) is used to understand the impact of aeration for refolding recombinant human vascular endothelial growth factor (rhVEGF) in a reducing environment. A reverse‐phase HPLC assay is used to assess product quality. The goal in understanding the oxygen needs of the reaction and its impact to quality, is to make a product that is efficiently refolded to its native and active form with minimum oxidative degradation from batch to batch. Because this refolding process is heavily dependent on oxygen, the % dissolved oxygen (DO) profile is explored as a PAT tool to regulate process performance at commercial manufacturing scale. A dynamic gassing out approach using constant mass transfer (kLa) is used for scale‐up of the aeration parameters to manufacturing scale tanks (2,000 L, 15,000 L). The resulting DO profiles of the refolding reaction show similar trends across scales and these are analyzed using rpHPLC. The desired product quality attributes are then achieved through alternating air and nitrogen sparging triggered by changes in the monitored DO profile. This approach mitigates the impact of differences in equipment or feedstock components between runs, and is directly inline with the key goal of PAT to “actively manage process variability using a knowledge‐based approach.” Biotechnol. Bioeng. 2009; 104: 340–351 © 2009 Wiley Periodicals, Inc.  相似文献   

10.
In this study, the application of Raman spectroscopy to the simultaneous quantitative determination of glucose, glutamine, lactate, ammonia, glutamate, total cell density (TCD), and viable cell density (VCD) in a CHO fed‐batch process was demonstrated in situ in 3 L and 15 L bioreactors. Spectral preprocessing and partial least squares (PLS) regression were used to correlate spectral data with off‐line reference data. Separate PLS calibration models were developed for each analyte at the 3 L laboratory bioreactor scale before assessing its transferability to the same bioprocess conducted at the 15 L pilot scale. PLS calibration models were successfully developed for all analytes bar VCD and transferred to the 15 L scale. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

11.
Quality by design (QbD) is a scheme for the development, manufacture, and approval of pharmaceutical products. The end goal of QbD is to ensure product quality by building it into the manufacturing process. The main regulatory bodies are encouraging its implementation to the manufacture of all new pharmaceuticals including biological products. Monoclonal antibodies (mAbs) are currently the leading products of the biopharmaceutical industry. It has been widely reported that glycosylation directly influences the therapeutic mechanisms by which mAbs function in vivo. In addition, glycosylation has been identified as one of the main sources of monoclonal antibody heterogeneity, and thus, a critical parameter to follow during mAb manufacture. This article reviews the research on glycosylation of mAbs over the past 2 decades under the QbD scope. The categories presented under this scope are: (a) definition of the desired clinical effects of mAbs, (b) definition of the glycosylation‐associated critical quality attributes (glycCQAs) of mAbs, (c) assessment of process parameters that pose a risk for mAb glycCQAs, and (d) methods for accurately quantifying glycCQAs of mAbs. The information available in all four areas leads us to conclude that implementation of QbD to the manufacture of mAbs with specific glycosylation patterns will be a reality in the near future. We also foresee that the implementation of QbD will lead to the development of more robust and efficient manufacturing processes and to a new generation of mAbs with increased clinical efficacy. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
In the process analytical technology (PAT) initiative, the application of sensors technology and modeling methods is promoted. The emphasis is on Quality by Design, online monitoring, and closed-loop control with the general aim of building in product quality into manufacturing operations. As a result, online high-throughput process analyzers find increasing application and therewith high amounts of highly correlated data become available online. In this study, an hybrid chemometric/mathematical modeling method is adopted for data analysis, which is shown to be advantageous over the commonly used chemometric techniques in PAT applications. This methodology was applied to the analysis of process data of Bordetella pertussis cultivations, namely online data of near-infrared, (NIR), pH, temperature and dissolved oxygen, and off-line data of biomass, glutamate, and lactate concentrations. The hybrid model structure consisted of macroscopic material balance equations in which the specific reactions rates are modeled by nonlinear partial least square (PLS). This methodology revealed a significant higher statistical confidence in comparison to PLSs, translated in a reduction of mean squared prediction errors (e.g., individual root mean squared prediction errors calibration/validation obtained through the hybrid model for the concentrations of lactate: 0.8699/0.7190 mmol/L; glutamate: 0.6057/0.2917 mmol/L; and biomass: 0.0520/0.0283 OD; and obtained through the PLS model for the concentrations of lactate: 1.3549/1.0087 mmol/L; glutamate: 0.7628/0.3504 mmol/L; and biomass: 0.0949/0.0412 OD). Moreover, the analysis of loadings and scores in the hybrid approach revealed that process features can, as for PLS, be extracted by the hybrid method.  相似文献   

13.
14.
With the increasing demand to provide more detailed quality attributes, more sophisticated glycan analysis tools are highly desirable for biopharmaceutical manufacturing. Here, we performed an intact glycopeptide analysis method to simultaneously analyze the site-specific N- and O-glycan profiles of the recombinant erythropoietin Fc (EPO-Fc) protein secreted from a Chinese hamster ovary glutamine synthetase stable cell line and compared the effects of two commercial culture media, EX-CELL (EX) and immediate advantage (IA) media, on the glycosylation profile of the target protein. EPO-Fc, containing the Fc region of immunoglobulin G1 (IgG1) fused to EPO, was harvested at Day 5 and 8 of a batch cell culture process followed by purification and N- and O-glycopeptide profiling. A mixed anion exchange chromatographic column was implemented to capture and enrich N-linked glycopeptides. Using intact glycopeptide characterization, the EPO-Fc was observed to maintain their individual EPO and Fc N-glycan characteristics in which the EPO region presented bi-, tri-, and tetra-branched N-glycan structures, while the Fc N-glycan displayed mostly biantennary glycans. EPO-Fc protein generated in EX medium produced more complex tetra-antennary N-glycans at each of the three EPO N-sites while IA medium resulted in a greater fraction of bi- and tri-antennary N-glycans at these same sites. Interestingly, the sialylation content decreased from sites 1–4 in both media while the fucosylation progressively increased with a maximum at the final IgG Fc site. Moreover, we observed that low amounts of Neu5Gc were detected and the content increased at the later sampling time in both EX and IA media. For O-glycopeptides, both media produced predominantly three structures, N1F1F0SOG0, N1H1F0S1G0, and N1H1F0S2G0, with lesser amounts of other structures. This intact glycopeptide method can decipher site-specific glycosylation profile and provide a more detailed characterization of N- and O-glycans present for enhanced understanding of the key product quality attributes such as media on recombinant proteins of biotechnology interest.  相似文献   

15.
N‐linked glycosylation is known to be a crucial factor for the therapeutic efficacy and safety of monoclonal antibodies (mAbs) and many other glycoproteins. The nontemplate process of glycosylation is influenced by external factors which have to be tightly controlled during the manufacturing process. In order to describe and predict mAb N‐linked glycosylation patterns in a CHO‐S cell fed‐batch process, an existing dynamic mathematical model has been refined and coupled to an unstructured metabolic model. High‐throughput cell culture experiments carried out in miniaturized bioreactors in combination with intracellular measurements of nucleotide sugars were used to tune the parameter configuration of the coupled models as a function of extracellular pH, manganese and galactose addition. The proposed modeling framework is able to predict the time evolution of N‐linked glycosylation patterns during a fed‐batch process as a function of time as well as the manipulated variables. A constant and varying mAb N‐linked glycosylation pattern throughout the culture were chosen to demonstrate the predictive capability of the modeling framework, which is able to quantify the interconnected influence of media components and cell culture conditions. Such a model‐based evaluation of feeding regimes using high‐throughput tools and mathematical models gives rise to a more rational way to control and design cell culture processes with defined glycosylation patterns. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1135–1148, 2016  相似文献   

16.
Mitigating risks to biotherapeutic protein production processes and products has driven the development of targeted process analytical technology (PAT); however implementing PAT during development without significantly increasing program timelines can be difficult. The development of a monoclonal antibody expressed in a Chinese hamster ovary (CHO) cell line via fed‐batch processing presented an opportunity to demonstrate capabilities of altering percent glycated protein product. Glycation is caused by pseudo‐first order, non‐enzymatic reaction of a reducing sugar with an amino group. Glucose is the highest concentration reducing sugar in the chemically defined media (CDM), thus a strategy controlling glucose in the production bioreactor was developed utilizing Raman spectroscopy for feedback control. Raman regions for glucose were determined by spiking studies in water and CDM. Calibration spectra were collected during 8 bench scale batches designed to capture a wide glucose concentration space. Finally, a PLS model capable of translating Raman spectra to glucose concentration was built using the calibration spectra and spiking study regions. Bolus feeding in mammalian cell culture results in wide glucose concentration ranges. Here we describe the development of process automation enabling glucose setpoint control. Glucose‐free nutrient feed was fed daily, however glucose stock solution was fed as needed according to online Raman measurements. Two feedback control conditions were executed where glucose was controlled at constant low concentration or decreased stepwise throughout. Glycation was reduced from ~9% to 4% using a low target concentration but was not reduced in the stepwise condition as compared to the historical bolus glucose feeding regimen. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:224–234, 2016  相似文献   

17.
Use of multivariate data analysis for the manufacturing of biologics has been increasing due to more widespread use of data-generating process analytical technologies (PAT) promoted by the US FDA. To generate a large dataset on which to apply these principles, we used an in-house model CHO DG44 cell line cultured in automated micro bioreactors alongside PAT with four commercial growth media focusing on antibody quality through N-glycosylation profiles. Using univariate analyses, we determined that different media resulted in diverse amounts of terminal galactosylation, high mannose glycoforms, and aglycosylation. Due to the amount of in-process data generated by PAT instrumentation, multivariate data analysis was necessary to ascertain which variables best modeled our glycan profile findings. Our principal component analysis revealed components that represent the development of glycoforms into terminally galacotosylated forms (G1F and G2F), and another that encompasses maturation out of high mannose glycoforms. The partial least squares model additionally incorporated metabolic values to link these processes to glycan outcomes, especially involving the consumption of glutamine. Overall, these approaches indicated a tradeoff between cellular productivity and product quality in terms of the glycosylation. This work illustrates the use of multivariate analytical approaches that can be applied to complex bioprocessing problems for identifying potential solutions.  相似文献   

18.
The principle of quality by design (QbD) has been widely applied to biopharmaceutical manufacturing processes. Process characterization is an essential step to implement the QbD concept to establish the design space and to define the proven acceptable ranges (PAR) for critical process parameters (CPPs). In this study, we present characterization of a Saccharomyces cerevisiae fermentation process using risk assessment analysis, statistical design of experiments (DoE), and the multivariate Bayesian predictive approach. The critical quality attributes (CQAs) and CPPs were identified with a risk assessment. The statistical model for each attribute was established using the results from the DoE study with consideration given to interactions between CPPs. Both the conventional overlapping contour plot and the multivariate Bayesian predictive approaches were used to establish the region of process operating conditions where all attributes met their specifications simultaneously. The quantitative Bayesian predictive approach was chosen to define the PARs for the CPPs, which apply to the manufacturing control strategy. Experience from the 10,000 L manufacturing scale process validation, including 64 continued process verification batches, indicates that the CPPs remain under a state of control and within the established PARs. The end product quality attributes were within their drug substance specifications. The probability generated with the Bayesian approach was also used as a tool to assess CPP deviations. This approach can be extended to develop other production process characterization and quantify a reliable operating region. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:799–812, 2016  相似文献   

19.
《Trends in biotechnology》2014,32(6):329-336
Increasingly elaborate and voluminous datasets are generated by the (bio)pharmaceutical industry and are a major challenge for application of PAT and QbD principles. Multivariate data analysis (MVDA) is required to delineate relevant process information from large multi-factorial and multi-collinear datasets. Here the key role of MVDA for industrial (bio)process data is discussed, with a focus on progress and limitations of MVDA as a PAT solution for biopharmaceutical cultivation processes. MVDA based models were proven useful and should be routinely implemented for bioprocesses. It is concluded that although the highest level of PAT with process control within its design space in real-time during manufacturing is not reached yet, MVDA will be central to reach this ultimate objective for cell cultivations.  相似文献   

20.
Technologies capable of monitoring product quality attributes and process parameters in real time are becoming popular due to the endorsement of regulatory agencies and also to support the agile development of biotherapeutic pipelines. The utility of vibrational spectroscopic techniques such as Fourier transform mid-infrared (Mid-IR) and multivariate data analysis (MVDA) models allows the prediction of multiple critical attributes simultaneously in real time. This study reports the use of Mid-IR and MVDA model sensors for monitoring of multiple attributes (excipients and protein concentrations) in real time (measurement frequency of every 40 s) at ultrafiltration and diafiltration (UF/DF) unit operation of biologics manufacturing. The platform features integration of fiber optic Mid-IR probe sensors to UF/DF set up at the bulk solution and through a flow cell at the retentate line followed by automated Mid-IR data piping into a process monitoring software platform with pre-loaded partial least square regression (PLS) chemometric models. Data visualization infrastructure is also built-in to the platform so that upon automated PLS prediction of excipients and protein concentrations, the results were projected in a graphical or numerical format in real time. The Mid-IR predicted concentrations of excipients and protein show excellent correlation with the offline measurements by traditional analytical methods. Absolute percent difference values between Mid-IR predicted results and offline reference assay results were ≤5% across all the excipients and the protein of interest; which shows a great promise as a reliable process analytical technology tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号