首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
As biomanufacturers consider the transition from batch to continuous processing, it will be necessary to re-examine the design and operating conditions for many downstream processes. For example, the integration of virus removal filtration in continuous biomanufacturing will likely require operation at low and constant filtrate flux instead of the high (constant) transmembrane pressures (TMPs) currently employed in traditional batch processing. The objective of this study was to examine the effect of low operating filtrate flux (5–100 L/m2/h) on protein fouling during normal flow filtration of human serum Immunoglobulin G (hIgG) through the Viresolve® Pro membrane, including a direct comparison of the fouling behavior during constant-flux and constant-pressure operation. The filter capacity, defined as the volumetric throughput of hIgG solution at which the TMP increased to 30 psi, showed a distinct minimum at intermediate filtrate flux (around 20–30 L/m2/h). The fouling data were well-described using a previously-developed mechanistic model based on sequential pore blockage and cake filtration, suitably modified for operation at constant flux. Simple analytical expressions for the pressure profiles were developed in the limits of very low and high filtrate flux, enabling rapid estimation of the filter performance and capacity. The model calculations highlight the importance of both the pressure-dependent rate of pore blockage and the compressibility of the protein cake to the fouling behavior. These results provide important insights into the overall impact of constant-flux operation on the protein fouling behavior and filter capacity during virus removal filtration using the Viresolve® Pro membrane.  相似文献   

2.
Virus filtration is a robust size-based technique that can provide the high level of viral clearance required for the production of mammalian-derived biotherapeutics such as monoclonal antibodies. Several studies have shown that the retention characteristics of some, but not all, virus filters can be significantly affected by membrane fouling, but there have been no direct measurements of how protein fouling might alter the location of virus capture within these membranes. The objective of this study was to directly examine the effect of protein fouling by human immunoglobulin G (IgG) on virus capture within the Viresolve® Pro and Viresolve® NFP membranes by scanning electron microscopy using different size gold nanoparticles. IgG fouling shifted the capture location of 20 nm gold nanoparticles further upstream within the Viresolve® Pro filter due to the constriction and/or blockage of the pores in the virus retentive region of the filter. In contrast, IgG fouling had no measurable effect on the capture of 20 nm nanoparticles in the Viresolve® NFP membrane, and IgG fouling had no effect on the capture of larger 40 and 100 nm nanoparticles in either membrane. These results provide important insights into how protein fouling alters the virus retention characteristics of different virus filters.  相似文献   

3.
Recent studies have reported very low capacity during sterile filtration of glycoconjugate vaccines due to rapid fouling of the sterile filter. The objective of this study was to explore the potential for significantly increasing the capacity of the sterile filter through the use of an appropriate prefilter. Data were obtained using prefilters with different pore size and chemistry, with the sterile filtration performed at constant filtrate flux using 0.22 μm nominal pore size Durapore® polyvinylidene difluoride membranes. Prefiltration through 5 μm pore size Durapore® or Nylon prefilters nearly eliminated the fouling of the sterile filter, leading to more than a 100-fold reduction in the rate of pressure increase for the sterile filter. This dramatic improvement in sterile filter performance was due to the removal of large components (greater than 1 μm in size) as confirmed by dynamic light scattering. These results demonstrate the potential of using large pore size prefilters to significantly enhance the performance of the sterile filtration process for the production of important glycoconjugate vaccines.  相似文献   

4.
Virus‐removal filtration technology is commonly used in the manufacturing process for biologics to remove potential viral contaminants. Virus‐removal filters designed for retaining parvovirus, one of the smallest mammalian viruses, are considered an industry standard as they can effectively remove broad ranges of viruses. It has long been observed that the performance of virus filters can be influenced by virus preparations used in the laboratory scale studies (PDA, 2010 ). However, it remains unclear exactly what quality attributes of virus preparations are critical or indicative of virus filter performance as measured by effectiveness of virus removal and filter capacity consistency. In an attempt to better understand the relationship between virus preparation and virus filter performance, we have systematically prepared and analyzed different grades of parvovirus with different purity levels and compared their performance profiles on Viresolve® Pro parvovirus filters using four different molecules. Virus preparations used in the studies were characterized using various methods to measure DNA and protein content as well as the hydrodynamic diameter of virus particles. Our results indicate that the performance of Viresolve® Pro filters can be significantly impacted depending on the purity of the virus preparations used in the spike and recovery studies. More importantly, we have demonstrated that the purity of virus preparations is directly correlated to the measurable biochemical and biophysical properties of the virus preparations such as DNA and protein content and monodispersal status, thus making it possible to significantly improve the consistency and predictability of the virus filter performance during process step validations. Biotechnol. Bioeng. 2013; 110: 229–239. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Ongoing efforts in the biopharmaceutical industry to enhance productivity and reduce manufacturing costs include development of intensified, linked, and/or continuous processes. One approach to improve productivity and process economics of the polishing step (i.e., anion exchange chromatography) is to preconcentrate the product intermediate using a single-pass tangential flow filtration step before loading on the resin. This intensification of the polishing step consequently leads to changes in product intermediate concentration for subsequent virus filtration operations, potentially impacting filter performance and methods for evaluating viral clearance. The filtrate flux performance of a virus filtration operation was evaluated with monoclonal antibody (mAb) solutions of varying concentrations. These data were used to evaluate the effect on filter sizing for a hypothetical mAb perfusion process. The optimum mAb concentration to minimize the area of the virus filter was a function of the filtration step duration and reflected the competing effects of increasing concentration and decreasing volumetric flux on the membrane productivity. mAb solutions at high and low concentrations were used to evaluate viral clearance with extended filtration times (e.g., 24–72 h) simulating continuous processing conditions. Modifications to more traditional filtration viral clearance study methods were required to avoid experimental artifacts associated with the extended filtration time. No virus passage through the filter was observed under these conditions, similar to previous results for batch processes. These data demonstrate the feasibility of obtaining effective virus removal even when mAb concentration and filtrations times are increased by up to an order of magnitude from current common practices.  相似文献   

6.
We investigated the effect of antibody solution conditions (ionic strength, pH, IgG concentration, buffer composition, and aggregate level (dimer content)) on filter performance for a virus removal filtration process using the Planova? 20N, a virus removal filter. Ionic strength and pH affected the filter flux. A consistent high flux was maintained at an ionic strength greater than 10 mM and at pH 4–8 under a typical buffer composition (sodium chloride, citrate, acetate, and phosphate). Optimum IgG concentration was 10–20 mg/mL allowing for high throughput (kg/m2 of IgG). Dimer content negligibly affected the flux level. Under high throughput conditions, virus spiking did not affect flux whereas a parvovirus logarithmic reduction value greater than 5 was maintained. From the results of zeta potential analyses for IgG and the membrane, we considered that electrostatic interactions between antibodies and the membrane affect filter performance (flux level and throughput). These results indicate that the Planova? 20N filter is applicable for a wide range of solution conditions typically used in antibody processing. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

7.
There are few reports of the adoption of continuous processes in bioproduction, particularly the implementation of end-to-end continuous or integrated processes, due to difficulties such as feed adjustment and incorporating virus filtration. Here, we propose an end-to-end integrated continuous process for a monoclonal antibody (mAb) with three integrated process segments: upstream production processes with pool-less direct connection, pooled low pH virus inactivation with pH control and a total flow-through integrated polishing process in which two columns were directly connected with a virus filter. The pooled virus inactivation step defines the batch, and high impurities reduction and mAb recovery were achieved for batches conducted in succession. Viral clearance tests also confirmed robust virus reduction for the flow-through two-column chromatography and the virus filtration steps. Additionally, viral clearance tests with two different hollow fiber virus filters operated at flux ranging from 1.5 to 40 LMH (liters per effective surface area of filter in square meters per hour) confirmed robust virus reduction over these ranges. Complete clearance with virus logarithmic reduction value ≥4 was achieved even with a process pause at the lowest flux. The end-to-end integrated continuous process proposed in this study is amenable to production processes, and the investigated virus filters have excellent applicability to continuous processes conducted at constant flux.  相似文献   

8.
Parvovirus retentive filters that assure removal of viruses and virus‐like particles during the production of therapeutic proteins significantly contribute to total manufacturing costs. Operational approaches that can increase throughput and reduce filtration area would result in a significant cost savings. A combination of methods was used to achieve high throughputs of an antibody or therapeutic protein solution through three parvovirus retentive filters. These methods included evaluation of diatomaceous earth or size‐based prefilters, the addition of additives, and the optimization of protein concentration, temperature, buffer composition, and solution pH. An optimum temperature of 35°C was found for maximizing throughput through the Virosart CPV and Viresolve Pro filters. Mass‐throughput values of 7.3, 26.4, and 76.2 kg/m2 were achieved through the Asahi Planova 20N, Virosart CPV, and Viresolve Pro filters, respectively, in 4 h of processing. Mass‐throughput values of 73, 137, and 192 kg/m2 were achieved through a Millipore Viresolve Pro filter in 4.0, 8.8, and 22.1 h of processing, respectively, during a single experiment. However, large‐scale parvovirus filtration operations are typically controlled to limit volumetric throughput to below the level achieved during small‐scale virus spiking experiments. The virus spike may cause significant filter plugging, limiting throughput. Therefore newer parvovirus filter spiking strategies should be adopted that may lead to more representative viral clearance data and higher utilization of large‐scale filter capacity. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
The impact of typical anion‐exchange flowthrough conditions on the IgG mass loading of an anion‐exchange membrane scale‐down unit (Mustang® Q coin) was investigated. High performance size‐exclusion chromatography and multiangle laser light scattering results suggested the presence of a small fraction of IgG aggregates with average radius >100 nm under anion‐exchange flowthrough conditions. The small filtration area presented by the 0.35 mL membrane volume Mustang® Q coin limited the membrane throughput due to fouling from the aggregates at higher antibody loading. Data in this report indicated that a 0.2 μm hybrid polyethersulfone and polyvinylidene fluoride membrane in‐line prefilter with a minimum filtration area of 20 sq cm alleviated the Mustang® Q coin fouling. The combined cake filtration and intermediate blocking model was proposed as the most likely membrane pore blocking mechanism. Increasing the filtration area in the in‐line prefilter resulted in higher IgG mass throughput. Thus, using an appropriately sized in‐line prefilter could provide more robust antibody throughput performance on scale‐down membrane anion‐exchange units. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

10.
A simple method for filter purification of Chlamydia trachomatis from cell culture is described. Crude homogenates of chlamydiae-infected cells were passed through a glass prefilter and a 0.6 microns pore diameter polycarbonate filter. The filtrate was then passed through a 0.2 microns pore diameter filter on which the chlamydiae were trapped. This filter was then back-washed to collect the organisms. These procedures removed cell debris and soluble protein, and yielded particles with a narrow size distribution. The mean yield of viable chlamydiae purified by filtration was 64% when the filters were washed at each stage of the process.  相似文献   

11.
The presence of impurities or contaminants in biological products such as monoclonal antibodies (mAb) could affect efficacy or cause adverse reactions in patients. ICH guidelines (Q6A and Q6B) are in place to regulate the level of impurities within clinical drug products. An impurity less often reported and, therefore, lacking regulatory guideline is beta‐glucan. Beta‐glucans are polysaccharides of d ‐glucose monomers linked by (1‐3) beta‐glycosidic bonds, and are produced by prokaryotic and eukaryotic organisms, including plants. They may enter manufacturing processes via raw materials such as cellulose‐based membrane filters or sucrose. Here we report the detection of beta‐glucan contamination of a monoclonal IgE antibody (MOv18), manufactured in our facility for a first‐in‐human, first‐in‐class clinical trial in patients with cancer. Since beta‐glucans have potential immunostimulatory properties and can cause symptomatic infusion reactions, it was of paramount importance to identify the source of beta‐glucans in our product and to reduce the levels to clinically insignificant concentrations. We identified beta‐glucans in sucrose within the formulation buffer and within the housing storage buffer of the virus removal filter. We also detected low level beta‐glucan contamination in two of four commercially available antibodies used in oncology. Both formulation buffers contained sucrose. We managed to reduce levels of beta‐glucan in our product 10‐fold, by screening all sucrose raw material, filtering the sucrose by Posidyne® membrane filtration, and by incorporating extra wash steps when preparing the virus removal filter. The beta‐glucan levels now lie within a range that is unlikely to cause clinically significant immunological effects. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1494–1502, 2016  相似文献   

12.
Viral filtration is an expensive regulatory requirement in downstream processing of monoclonal antibodies (mAbs). This process step is typically operated with an overdesigned filter in order to account for any batch to batch variability in the filter, as well as the feed characteristics. Here, we propose a simple, six‐parameter mechanistic model for viral filtration where three parameters are membrane‐specific while the other three depend on feed characteristics and membrane‐feed interactions. Viruses are considered as passive particles which are retained by the membrane on the basis of size exclusion. The model envisages that the viral filter contains two kind of pores: virus‐retentive, small‐sized pores and non‐retentive, large‐sized pores. The small‐sized pores get blocked during filtration resulting in decrease in active membrane area, while the large‐sized pores get constricted during filtration. The length of constricted part increases during filtration and contributes to increase in hydraulic resistance of the filter. Rate of these processes (blocking and constriction) are assumed to be proportional to the instantaneous rate of retention of the viral particles. The general nature of the model is validated with the experimental data on viral filtration for four different commercial membranes used in biotech industries as well as different model viruses. The proposed model has been demonstrated to describe the behavior of filters with very good accuracy. The best‐fit model parameter values indicate about the various phenomena that are responsible for differences in the behavior of the membranes as well as change in retention and flux with feed concentration. The proposed model can be used for improving design of virus filters as well as in appropriate sizing of the filters during processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1538–1547, 2017  相似文献   

13.
Virus filtration process is used to ensure viral safety in the biopharmaceutical downstream processes with high virus removal capacity (i.e., >4 log10). However, it is still constrained by protein fouling, which results in reduced filtration capacity and possible virus breakthrough. This study investigated the effects of protein fouling on filtrate flux and virus breakthrough using commercial membranes that had different symmetricity, nominal pore size, and pore size gradients. Flux decay tendency due to protein fouling was influenced by hydrodynamic drag force and protein concentration. As the results of prediction with the classical fouling model, standard blocking was suitable for most virus filters. Undesired virus breakthrough was observed in the membranes having relatively a large pore diameter of the retentive region. The study found that elevated levels of protein solution reduced virus removal performance. However, the impact of prefouled membranes was minimal. These findings shed light on the factors that influence protein fouling during the virus filtration process of biopharmaceutical production.  相似文献   

14.
The ability to process high‐concentration monoclonal antibody solutions (> 10 g/L) through small‐pore membranes typically used for virus removal can improve current antibody purification processes by eliminating the need for feed stream dilution, and by reducing filter area, cycle‐time, and costs. In this work, we present the screening of virus filters of varying configurations and materials of construction using MAb solutions with a concentration range of 4–20 g/L. For our MAbs of interest—two different humanized IgG1s—flux decay was not observed up to a filter loading of 200 L/m2 with a regenerated cellulose hollow fiber virus removal filter. In contrast, PVDF and PES flat sheet disc membranes were plugged by solutions of these same MAbs with concentrations >4 g/L well before 50 L/m2. These results were obtained with purified feed streams containing <2% aggregates, as measured by size exclusion chromatography, where the majority of the aggregate likely was composed of dimers. Differences in filtration flux performance between the two MAbs under similar operating conditions indicate the sensitivity of the system to small differences in protein structure, presumably due to the impact of these differences on nonspecific interactions between the protein and the membrane; these differences cannot be anticipated based on protein pI alone. Virus clearance data with two model viruses (XMuLV and MMV) confirm the ability of hollow fiber membranes with 19 ± 2 nm pore size to achieve at least 3–4 LRV, independent of MAb concentration, over the range examined. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
Controlling viral contamination is an important issue in the process development of monoclonal antibodies (MAbs) produced from mammalian cell lines. Virus filtration (VF) has been demonstrated to be a robust and effective clearance step which can provide ≥4 logs of reduction via size exclusion. The minimization of VF area by increasing flux and filter loading is critical to achieving cost targets as VFs are single use and often represent up to 10% of total purification costs. The research presented in this publication describes a development strategy focused on biophysical attributes of product streams that are directly applicable to VF process performance. This article summarizes a case study where biophysical tools (high‐pressure size exclusion chromatography, dynamic light scattering, and absolute size exclusion chromatography) were applied to a specific MAb program to illustrate how changes in feed composition (pH, sodium chloride concentration, and buffer salt type) can change biophysical properties which correlate with VF performance. The approach was subsequently refined and expanded over the course of development of three MAbs where performance metrics (i.e., loading and flux) were evaluated for two specific virus filters (Viresolve Pro and Planova 20N) during both unspiked control runs and virus clearance experiments. The analyses of feed attributes can be applied to a decision tree to guide the recommendation of a VF filter and operating conditions for use in future MAb program development. The understanding of the biophysical properties of the feed can be correlated to virus filter performance to significantly reduce the mass of product, time, and costs associated with virus filter step development. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:765–774, 2015  相似文献   

16.
Although ultrafiltration is currently used for the concentration and formulation of nearly all biotherapeutics, obtaining the very high target concentrations for monoclonal antibody products is challenging. The objective of this work was to examine the effects of the membrane module design and buffer conditions on both the filtrate flux and maximum achievable protein concentration during the ultrafiltration of highly concentrated monoclonal antibody solutions. Experimental data were obtained using both hollow fiber and screened cassettes and in the presence of specific excipients that are known to alter the solution viscosity. Data were compared with predictions of a recently developed model that accounts for the complex thermodynamic and hydrodynamic behavior in these systems, including the effects of back‐filtration arising from the large pressure drop through the module due to the high viscosity of the concentrated antibody solutions. Model calculations were in good agreement with experimental data in hollow fiber modules with very different fiber length and in screened cassettes having different screen geometries. These results provide important insights into the key factors controlling the filtrate flux and maximum achievable protein concentration during ultrafiltration of highly concentrated antibody solutions as well as a framework for the development of enhanced ultrafiltration processes for this application. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:692–701, 2016  相似文献   

17.
β-Glucan process-related impurities can be introduced into biopharmaceutical products via upstream or downstream processing or via excipients. This study obtained a comprehensive process-mapping dataset for five monoclonal antibodies to assess β-glucan introduction and clearance during development and production runs at various scales. Overall, 198 data points were available for analysis. The greatest β-glucan concentrations were found in the depth-filtration filtrate (37–2,745 pg/ml). Load volume correlated with β-glucan concentration in the filtrate, whereas flush volume was of secondary importance. Cation-exchange chromatography significantly cleared β-glucans. Furthermore, β-glucan leaching from the Planova 20N virus removal filter was reduced by increasing the flush volume (1 vs. 10 L/m2). β-glucan concentrations after filter flush with 10 L/m2 were consistently <10 pg/ml. No or only limited β-glucan clearance was attained via ultrafiltration/diafiltration (UF/DF). However, during the first run with monoclonal antibody (mAb) 4, β-glucan concentration in the UF/DF retentate was 10.8 pg/mg, potentially due to β-glucan leaching from the first run with a regenerated cellulose membrane. Overall, β-glucan levels in the final mAb drug substance were 1–12 pg/mg. Assuming high doses of 1,000–5,000 mg, a β-glucan contamination at 20 pg/mg would translate to 20–100 ng/dose, which is below the previously suggested threshold for product safety (≤500 ng/dose).  相似文献   

18.
Virus filtration (VF) is a key step in an overall viral clearance process since it has been demonstrated to effectively clear a wide range of mammalian viruses with a log reduction value (LRV) > 4. The potential to achieve higher LRV from virus retentive filters has historically been examined using bacteriophage surrogates, which commonly demonstrated a potential of > 9 LRV when using high titer spikes (e.g. 1010 PFU/mL). However, as the filter loading increases, one typically experiences significant decreases in performance and LRV. The 9 LRV value is markedly higher than the current expected range of 4‐5 LRV when utilizing mammalian retroviruses on virus removal filters (Miesegaes et al., Dev Biol (Basel) 2010;133:3‐101). Recent values have been reported in the literature (Stuckey et al., Biotech Progr 2014;30:79‐85) of LRV in excess of 6 for PPV and XMuLV although this result appears to be atypical. LRV for VF with therapeutic proteins could be limited by several factors including process limits (flux decay, load matrix), virus spike level and the analytical methods used for virus detection (i.e. the Limits of Quantitation), as well as the virus spike quality. Research was conducted using the Xenotropic‐Murine Leukemia Virus (XMuLV) for its direct relevance to the most commonly cited document, the International Conference of Harmonization (ICH) Q5A (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, 1999) for viral safety evaluations. A unique aspect of this work is the independent evaluation of the impact of retrovirus quality and virus spike level on VF performance and LRV. The VF studies used XMuLV preparations purified by either ultracentrifugation (Ultra 1) or by chromatographic processes that yielded a more highly purified virus stock (Ultra 2). Two monoclonal antibodies (Mabs) with markedly different filtration characteristics and with similar levels of aggregate (<1.5%) were evaluated with the Ultra 1 and Ultra 2 virus preparations utilizing the Planova 20 N, a small virus removal filter. Impurities in the virus preparation ultimately limited filter loading as measured by determining the volumetric loading condition where 75% flux decay is observed versus initial conditions (V75). This observation occurred with both Mabs with the difference in virus purity more pronounced when very high spike levels were used (>5 vol/vol %). Significant differences were seen for the process performance over a number of lots of the less‐pure Ultra 1 virus preparations. Experiments utilizing a developmental lot of the chromatographic purified XMuLV (Ultra 2 Development lot) that had elevated levels of host cell residuals (vs. the final Ultra 2 preparations) suggest that these contaminant residuals can impact virus filter fouling, even if the virus prep is essentially monodisperse. Process studies utilizing an Ultra 2 virus with substantially less host cell residuals and highly monodispersed virus particles demonstrated superior performance and an LRV in excess of 7.7 log10. A model was constructed demonstrating the linear dependence of filtration flux versus filter loading which can be used to predict the V75 for a range of virus spike levels conditions using this highly purified virus. Fine tuning the virus spike level with this model can ultimately maximize the LRV for the virus filter step, essentially adding the LRV equivalent of another process step (i.e. protein A or CEX chromatography). © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:135–144, 2015  相似文献   

19.
We aimed to investigate the effect of virus‐spiking conditions on the filter performance (flux, flux decay, and parvovirus reduction) of the small virus filter Planova? 20N. We used three kinds of porcine parvovirus (PPV) stocks: serum, serum‐free, and purified. The flux profile with PPV spiking was similar to that without spiking for normal load filtration of about 250–300 L/m2. High volume (3 vol %) of serum‐free PPV and 1 vol % serum PPV reduced the flux to some extent for high‐load filtration (over 10 h, ca., 500 L/m2, 5 mg/mL IgG solution). Log reduction value (LRV) of PPV was maintained at a high level (>5) over the filtration volume. Flux for Planova? 20N was only minimally affected by the use of different virus stocks for spiking. Transmission electron microphotography showed that the distribution of PPV particles captured inside the membrane wall was reached until the ?60% thickness of the membrane, showing that the membrane of Planova? 20N has a thick effective layer for virus removal. These results provided evidence for the robustness of the filter performance of Planova? 20N, showing that it was not easily affected by virus spiking conditions and that it has a large capacity for high‐load conditions. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

20.
Virus filtration can provide a robust method for removal of adventitious parvoviruses in the production of biotherapeutics. Although virus filtration is typically thought to function by a purely size‐based removal mechanism, there is limited data in the literature indicating that virus retention is a function of solution conditions. The objective of this work was to examine the effect of solution pH and ionic strength on virus retention by the Viresolve® NFP membrane. Data were obtained using the bacteriophage ?X174 as a model virus, with retention data complemented by the use of confocal microscopy to directly visualize capture of fluorescently labeled ?X174 within the filter. Virus retention was greatest at low pH and low ionic strength, conditions under which there was an attractive electrostatic interaction between the negatively charged membrane and the positively charged phage. In addition, the transient increase in virus transmission seen in response to a pressure disruption at pH 7.8 and 10 was completely absent at pH 4.9, suggesting that the trapped virus are unable to overcome the electrostatic attraction and diffuse out of the pores when the pressure is released. Further confirmation of this physical picture was provided by confocal microscopy. Images obtained at pH 10 showed the migration of previously captured phage; this phenomenon was absent at pH 4.9. These results provide important new insights into the factors governing virus retention using virus filtration membranes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1280–1286, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号