首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Mammalian cells have been used in various research fields. More recently, cultured cells have been used as the cell source of “cultured meat.” Cell cultivation requires media containing nutrients, of which glucose and amino acids are the essential ones. These nutrients are generally derived from grains or heterotrophic microorganisms, which also require various nutrients derived from grains. Grain culture, in turn, requires many chemical fertilizers and agrochemicals, which can cause greenhouse gas emission and environmental contamination. Furthermore, grain production is greatly influenced by environmental changes. In contrast, microalgae efficiently synthesize various nutrients using solar energy, water, and inorganic substances, which are widely used in the energy sector. In this study, we aimed to apply nutrients extracted from microalgae in the culture media for mammalian cell cultivation. Glucose was efficiently extracted from Chlorococcum littorale or Arthrospira platensis using sulfuric acid, whereas 18 of the 20 proteinogenic amino acids were efficiently extracted from Chlorella vulgaris using hydrochloric acid. We further investigated whether nutrients present in the algal extracts could be used in mammalian cell cultivation. Although almost all C2C12 mouse myoblasts died during cultivation in a glucose- and amino acid-free medium, the cell death was rescued by adding algal extract(s) into the nutrient-deficient media. This indicates that nutrients present in algal extracts can be used for mammalian cell cultivation. This study is the first step toward the establishment of a new cell culture system that can reduce environmental loads and remain unaffected by the impact of environmental changes.  相似文献   

2.
An evaluation of various refrigerated (4 °C) storage solutions and conditions was conducted using rabbit skin. Two in vitro methods to assay skin viability are presented: one which directly measures basal cell viability and one which assesses the skin's ability to grow in culture following storage. The superiority of storage in nutrient medium supplemented with fetal bovine serum over conventional storage in saline is clearly demonstrated. Storage in nutrient medium with 10% fetal calf serum resulted in basal cell viabilities which were over 30% higher than viabilities of skin stored by conventional methods in saline. Skin stored in saline failed to grow in culture, while 100% of the cultures of skin stored in medium plus fetal calf serum grew. Although addition of fetal calf serum to the saline improved the basal cell viability, growth in culture occurred only when the skin was stored in a capped tube. Skin stored in medium without serum gave viability results which were not significantly different from the unstored control, but growth rates in culture did differ significantly from the control values. Our study shows that the viability of rabbit skin and its ability to grow in vitro are depressed when the tissue is maintained at 4 °C in saline or in petri dishes, and optimal when refrigerated in nutrient medium supplemented with FBS in a sealed tube.  相似文献   

3.
Summary A nutrient mist bioreactor was modified for culturing transformed roots of Beta vulgaris and Carthamus tinctorius on a nylon support. Culture conditions of misting cycle, inoculum size, batch or continuous operation and sucrose concentration were varied in order to maximize growth over a 1-week period. Root tissue cultured in nutrient mists in a 1.8-1 culture chamber achieved levels of growth equivalent to hairy roots cultured in shake flasks with identical medium. Our results demonstrate the effectiveness of nutrient mist culture as applied to hairy roots, thereby providing an alternative means for successful culture of these tissues. Correspondence to: A. A. DiIorio  相似文献   

4.
This work was undertaken to determine the growth parameters of Lockhart’s equation for finding which component was predominantly contributing to the cell expansion rates of plants subjected to environmental stresses under tissue-culture conditions. Embryos isolated from soybean (Glycine max [L.] Merr.) and kidney bean (Phaseolus vulgaris L.) seeds were grown under tissue-culture conditions. The water potential of culture media ranged from ? 0·02 to ? 0·94 MPa so that nutrient deficiency and salt stress conditions could be applied. Additionally, the temperature of culture conditions was set from 10 to 40 °C to apply low-temperature and high-temperature stresses on plants grown at the optimum concentration of culture medium. Cell expansion could be inhibited completely by adding 2,4-dichlorophenoxyacetic acid and benzylaminopurine to culture media to form callus tissue. The sizes of the water potential gradient between the water source and elongating cells correlated with the speed of growth rates under nutrient deficiency, salt stress, growth retardation induced by plant hormones, low-temperature and high-temperature conditions in the present study, indicating that cell expansion rates were mainly associated with how much water could be absorbed by elongating cells regardless of the kinds of environmental stress conditions applied.  相似文献   

5.
The Asian citrus psyllid (AsCP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a highly competent vector of the phloem-inhabiting bacterium Candidatus Liberibacter asiaticus associated with the citrus disease huanglongbing (HLB). Commonly referred to as citrus greening disease in the USA, HLB causes reduced fruit yields, quality, and ultimately tree death and is considered the most serious citrus disease. HLB has become a major limiting factor to the production of citrus worldwide. Studies of HLB have been impeded by the fact that C. Liberibacter has not yet been cultured on artificial nutrient media. After being acquired by a psyllid, C. Liberibacter asiaticus is reported to replicate within the psyllid and is retained by the psyllid throughout its life span. We therefore hypothesized that C. Liberibacter asiaticus could be cultured in vitro using psyllid cell cultures as the medium and investigated the establishment of a pure culture for AsCP cells. Several commercially available insect cell culture media along with some media we developed were screened for viability to culture cells from AsCP embryos. Cells from psyllid tissues adhered to the plate and migration was observed within 24 h. Cells were maintained at 20°C. We successfully established primary psyllid cell cultures, referred to as DcHH-1, for D. citri Hert-Hunter-1, with a new media, Hert-Hunter-70.  相似文献   

6.
We report the establishment of a Pinus pinaster (Ait.) cell suspension culture in a modified MS medium supplemented with 2 mg ml−1 2,4-D and 1 mg ml−1 BA. Calli were obtained from seedling root segments and established a friable isodiametric cell suspension, suitable for in vitro studies of maritime pine at the cellular level. Growth (dry weight), cell viability, pH, and nutrient consumption: carbon source (sucrose, fructose and glucose), nitrogen source (ammonia and nitrate) and phosphate were monitored over 24 h. Suspension cells exhibited a 15-day exponential growth stage, during which a biphasic consumption profile was observed for all nutrients. Phosphate was the first limiting nutrient and preferable consumption was observed for glucose over fructose and nitrate over ammonium.  相似文献   

7.
Filtrates (conditioned medium) from high-density Chlorella vulgaris cultures in photobioreactors were obtained and tested for autoinhibitory activity under different conditions. Exponentially growing cells were inoculated at low initial cell concentration (2 × 105 cells/ml) in 90% conditioned medium (CM) supplemented with 10% fresh medium (FM) at low (atmospheric) CO2 levels. The time sequence of DNA histograms of cells in CM cultures showed that there is an accumulation of cells with two and four DNA equivalents in the culture over a period of time, signifying a blockage of cells at the division stage of the cell cycle. Examination of the chemical composition of CM showed the presence of high concentrations (> 10 mM) of bicarbonate. Adding similar bicarbonate concentrations to FM were found to have similar effects as CM cultures, causing blockage of cell division, though the intensity of the blocking effect was lower. The bicarbonate-free CM did not show any cell cycle modulating or inhibitory activity. The growth of cells cultivated at high (5%) CO2 levels in 90% CM supplemented with 10% FM was comparable to 10% FM cultures, indicating nutrient limitation in 90% CM culture. When the 90% CM culture was supplemented with 100% nutrients, the growth rate and final cell concentration was similar to 100% FM culture. Based on these results we conclude that C. vulgaris does not secrete any autoinhibitor(s) or cell cycle modulating compound(s) under the conditions from which the CM was obtained.  相似文献   

8.
The aquatic environment is affected by numerous chemical contaminants. There is an increasing need to identify these chemicals and to evaluate their potential toxicity towards aquatic life. In this research we optimized techniques for primary cell culture of Cyprinus carpio hepatocytes as one adjunct model for ecotoxicological evaluation of the potential hazards of xenobiotics in the aquatic environment. In this study, Cyprinus carpio hepatocytes were isolated by mechanical separation, two-step collagenase perfusion, and pancreatin digestion. The hepatocytes or parenchymal cells could be separated from cell debris and from non-parenchymal cells by low-speed centrifugation (Percoll gradient centrifugation). The harvested hepatocytes were suspended in DMEM, M199 (cultured in 5% CO2), or L-15 (cultured without 5% CO2) medium then cultured at 17, 27, or 37 °C. Cell yield was counted by use of a hemocytometer, and the viability of the cells was assessed by use of the Trypan blue exclusion test. Results from these studies showed that the best method of isolation was pancreatin digestion (the cell yield was 2.7 × 108 per g (liver weight) and the viability was 98.4%) and the best medium was M199 (cultured in 5% CO2) or L-15 (cultured without 5% CO2). The optimum culture temperature was 27 °C. The primary hepatocytes culture of Cyprimus carpio grew well and satisfied requirements for most toxicological experiments in this condition.  相似文献   

9.
In recent years, serum-free medium for mammalian cell cultivation has attracted a lot of attention, considering the high cost of production and environmental load involved in developing the conventional animal sera. The use of alternative growth-promoting products in mammalian cell cultivation such as extracts from microalgae has proven to be quite beneficial and environmental-friendly. This research aims to cultivate mammalian cells with growth-promoting factors derived from Chlorococcum littorale. We have established a simple extraction using the ultrasonication method and applied the extract in place of serum on mammalian C2C12 cell lines, 3T3 cell lines, and CHO cell lines to compare and analyze the effectiveness of the extract. Cell passage was conducted in a suspended culture condition with the addition of the extract. The results indicate that the extract from microalgae shows a high proliferation rate in all cell lines without fetal bovine serum. Moreover, it is eco-friendly and has huge potential to replace the traditional cell culture system. It could be applied in the fields of regenerative medicine, gene/cell therapies, as well as cultured meat production.  相似文献   

10.
Embryos of Phaseolus vulgaris L. were excised from seeds and cultured with cotyledons removed to determine the actions of various cultural conditions upon embryo development. Four media were tested, but ecotyledonized embryos did not grow as rapidly on any of them as did embryos with intact cotyledons on agar-water media. Comparisons of growth of ecotyledonized embryos with embryos bearing fractions of cotyledons indicated ecotyledonized embryos cultured on nutrient media grew about as well as embryos bearing cotyledons from which 97% of the volume had been removed surgically. The final weight of ecotyledonized embryos was greater when detached cotyledons were placed near them and was even greater when extracts of detached and incubated cotyledons were employed in the nutrient medium. Benzyladenine, kinetin, gibberellic acid, indole-acetic acid, presence of sucrose, and light or dark culture failed to enhance the ability of incubated cotyledons to stimulate growth of embryos.  相似文献   

11.
The purpose of these investigations was to evaluate the influence of limited nutrient availability in the culture medium on Proteus vulgaris biofilm formation on surfaces of stainless steel. The relationship between the P. vulgaris adhesion to the abiotic surfaces, the cellular ATP levels, cell surface hydrophobicity and changes in the profiles of extracellular proteins and lipopolysaccharides was examined. In all experimental variants the starvation conditions induced the bacterial cells to adhere to the surfaces of stainless steel. Higher ATP content and lower cell surface hydrophobicity of P. vulgaris cells was observed upon nutrient-limited conditions. Under starvation conditions a reduction in the levels of extracellular low molecular weight proteins was noticed. High molecular weight proteins formed the conditioning layer on stainless steel plates, making the bacteria adhesion process more favorable. The production of low molecular weight carbohydrates promoted more advanced stages of P. vulgaris biofilm formation process on the surfaces of stainless steel upon starvation.  相似文献   

12.
This article describes a three-dimensional culture system for the expansion of anchorage-dependent cells using fiber-shaped microcarrier (MC; Cytodex3) aggregates, termed “MC fibers.” The fiber encapsulates the cells, the MC aggregates, and collagen and is covered with a poly-l -lysine membrane. The thin structure of the fiber enables sufficient supply of O2 and nutrients to the cell. Using the MC fiber, we demonstrated the efficient expansion of C2C12 cells with high viability through serial passaging. Therefore, our culture system is useful for various applications where large-scale cell expansion is required, such as in pharmaceutical technologies, regenerative medicine, and cultured meat production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2755, 2019.  相似文献   

13.
In the present study, the protective effects of Bcl-2 over-expression in a suspension culture (without any adaptation) and spent medium (low nutrient and high toxic metabolite conditions) were investigated. In the suspension culture without prior adaptation, the viability of the control cell line fall to 0% by day 7, whereas the Bcl-2 cell line had a viability of 65%. The difference in the viability and viable cell density between the Bcl-2 and control cell lines was more apparent in the suspension culture than the static culture, and became even more apparent on day 6. Fluorescence microscopic counting revealed that the major mechanism of cell death in the control cell line in both the static and suspension cultures was apoptosis. For the Bcl-2 cell lines, necrosis was the major mode of cell death in the static culture, but apoptosis became equally important in the suspension culture. When the NSO 6A1 cell line was cultured in spent medium taken from a 14 day batch culture, the control cell line almost completely lost its viability by day 5, whereas, the Bcl-2 still had a viability of 73%. The viable cell density and viability of the Bcl-2 cell line cultivated in fresh medium were 2.2 and 2.7 fold higher, respectively, than those of the control cultures. However, the viable cell density and viability of the Bcl-2 cultivated in the spent medium were 8.7 and 7.8 fold higher, respectively, than those of the control cultures. Most of the dead cells in the control cell line were apoptotic; whereas, the major cell death mechanisms in the Bcl-2 cell line were necrotic.  相似文献   

14.
Microalgae are an important source of unsaturated fatty acids, phospholipids, glycolipids, and carotenes, which are useful compounds for the food and pharmaceutical industries. The Atacama Desert of northern Chile is one of the driest deserts on Earth and, as such, it is a great natural laboratory in which to study new microorganisms adapted to extreme environments. A microalgal strain, referred to here as CH03, was isolated from a microbial mat in salt flat water in Salar de Atacama. Genetic analysis of the 18S ribosomal RNA gene showed that the strain had homology with other known sequences of the species Chlorella sorokiniana. Our results revealed the adaptability of this microalga to freshwater medium under laboratory conditions, despite coming from an extremely high‐salinity environment. The fatty acid profile of CH03(A) newly isolated in Bold's basal medium differed from that of CH03(B) cultured in vitro in modified F/2 medium and from another five strains of C. sorokiniana and three strains of Chlorella vulgaris in that it had a high stearic acid content and had no polyunsaturated fatty acids. The major biochemical components observed in this strain were proteins (64.3–73.6%) and lipids (26.6–32.6%). This study suggests that the strain CH03 could be a protein source and that this oleaginous microalga is easy to grow in vitro as a biological model for future studies.  相似文献   

15.
Tequila vinasses (TVs) generated during Tequila production are brown liquid residues rich in nutrients. The nutrient content of agro-industrial effluents represents an excellent resource to support low-cost biomass production of microalgae; nonetheless, it is crucial to select the suitable microalgal strain to attain the highest biomass production in each residue used. In this study, biomass production, CO2 fixation from biogas, and cell compound accumulation by Chlorella vulgaris U162, Chlorella sp., Scenedesmus obliquus U169, and Scenedesmus sp. using biodigested and filtered TVs as culture medium were evaluated and compared with the conventional microalgal culture media, C30, BG-11, Bold 3N, and Bristol. The four microalgae evaluated attained the highest biomass production and CO2 fixation rate cultured in both residues, accumulating mainly carbohydrates and proteins although the most appropriate microalga to be cultured in TVs was Chlorella sp., recording 2.30 g L?1. Moreover, the nutrient ratio of filtered TVs was ideal to support biomass production while biodigested TVs need to be supplemented with nitrogen. Overall, these results demonstrated that tequila vinasses are an excellent resource to support high and quick biomass production of microalgae, which can be used to obtain biofuels as ethanol, biogas, and supplement food depicting an extra benefit during the appropriate disposal of this residue.  相似文献   

16.
Many strains of microalgae are potentially useful for industrial purposes. Microalgal biomass and microalgae‐derived substances are becoming valuable products with a widening range of applications including biofuels and human food. In this study, the possibility of using the methane waste from biomass biodigestion in the cultivation of Chlorella vulgaris biomass with simultaneous waste treatment was investigated. The methane waste from biomass biodigestion was obtained from a multifunctional facility (Piaszczyna, Poland) producing bioethanol from plant biomass with several steps to reuse the wastes, heat, and carbon dioxide. The growth and biomass yield, as well as photosynthetic performance of C. vulgaris on diluted waste, were similar to the results obtained on the standard mineral medium. The cultivation of C. vulgaris was the waste, treatment step that significantly reduced chemical oxygen demand. The results indicated that the waste contained micro‐ and macronutrients sufficient to sustain the growth of C. vulgaris cell culture up to 2 g of dry biomass per liter of culture. The results contributed to the development of the waste treatment step in the Piaszczyna facility that allowed for a further decrease in emissions and may lead to development of microalgae biomass‐based products in the facility portfolio.  相似文献   

17.
In this study, we assessed the potential of PMR1-disrupted Pichia pastoris (Pppmr1) expressing human serum albumin and interferon alpha2b fusion protein (HSA-IFN-alpha2b) in large-scale fermentation. The high osmotic pressure of standard basal salts medium (BSM) was detrimental to the growth and viability of Pppmr1. HSA-IFN-alpha2b was secreted into a supernatant with a concentration of up to 112 mg/L after 20 h of induction and then began to decline. In vitro stability tests indicated that the disappearance of HSA-IFN-alpha2b was ascribed to proteolytic degradation. Decreasing the salt concentration of BSM medium to one quarter of the original formula improved the growth and viability of Pppmr1. As a result of reduced cell lysis and protease release, HSA-IFN-alpha2b was stable in the supernatant, which enabled a longer production phase (30 h) and a higher expression level (215 mg/L). Lowering the culture temperature to 20°C increased the cell viability during carbon source transition and alleviated the oxygen and methanol limitation, which extended the production phase to 40 h and increased the expression level to 680 mg/L. The addition of 2% Soytone prolonged the production phase to 60 h and increased the expression level to 1,260 mg/L, which was more than tenfold higher than that of Pppmr1 cultured under the conditions recommended by Invitrogen.  相似文献   

18.
Electrolyzed reduced water (ERW) has attracted much attention because of its therapeutic effects. In the present study, a new culture medium, which we designated Water medium, was developed to elucidate the effects of ERW on the lifespan of Caenorhabditis elegans. Wild-type C. elegans had a significantly shorter lifespan in Water medium than in conventional S medium. However, worms cultured in ERW-Water medium exhibited a significantly extended lifespan (from 11% to 41%) compared with worms cultured in ultrapure water-Water medium. There was no difference between the lifespans of worms cultured in ERW-S medium and ultrapure water-S medium. Nematodes cultured in ultrapure water-Water medium showed significantly higher levels of reactive oxygen species than those cultured in ultrapure water-S medium. Moreover, ERW-Water medium significantly reduced the ROS accumulation induced in the worms by paraquat, suggesting that ERW-Water medium extends the longevity of nematodes at least partly by scavenging ROS.  相似文献   

19.
Removal of nitrogen and phosphorus from wastewater by two green microalgae (Chlorella vulgaris and Scenedesmus rubescens) was investigated using a novel method of algal cell immobilization, the twin-layer system. In the twin-layer system, microalgae are immobilized by self-adhesion on a wet, microporous, ultrathin substrate (the substrate layer). Subtending the substrate layer, a second layer, consisting of a macroporous fibrous tissue (the source layer), provides the growth medium. Twin-layers effectively separate microalgae from the bulk of their growth medium, yet allow diffusion of nutrients. In the twin-layer system, algae remain 100% immobilized, which compares favourably with gel entrapment methods for cell immobilization. Both microalgae removed nitrate efficiently from municipal wastewater. Using secondary, synthetic wastewater, the two algae also removed phosphate, ammonium and nitrate to less than 10% of their initial concentration within 9 days. It is concluded that immobilization of C. vulgaris and S. rubescens on twin-layers is an effective means to reduce nitrogen and phosphorus levels in wastewater.  相似文献   

20.
We recently developed a new culture system based on dialysis perfusion (designated JCC-device) for the generation and expansion of human lymphokine-activated killer (LAK) cells (Murata et al., 1990). More recently we have scaled up the volume of the culture vessel of the JCC-device from 100 ml to 400 ml for clinical use. In the present study, using this new 400 ml JCC-device, we cultured human lymph node lymphocytes (LNL) obtained from 8 surgical patients with primary lung cancer, and investigated the cellular characteristics in comparison with a conventional batchwise culture system using tissue culture dishes. With the JCC-device, the cell density reached a maximum 2.7×107 cells/ml with greater than 90% viability by the appropriate exchange of perfusion medium and by making additions at the appropriate intervals for recombinant interleukin-2 (rIL-2). The expansion fold of LNL with the JCC-device, ranging 6.6- to 19.2-fold (mean 13.8-fold), was not significantly different from that in dish cultures. There was no marked difference in cell surface phenotypes between the two culture systems in 7 out of 8 cases. As for LAK activity of LNL, the JCC culture was either superior or equal in 4 out of 8 cases, but inferior in the other 4 cases to the conventional dish cultures. In the latter cases, the usage of serum for the JCC culture was limited, which might have resulted in the low LAK activity. The JCC-device was able to reduce the consumption of basal medium, rIL-2 and serum by 20%, 84% and 96%, respectively compared to the conventional tissue culture systems. The JCC-device improved the routine performance of adoptive immunotherapy with LAK cells and rIL-2.Abbreviations LAK lymphokine-activated killer - rIL-2 recombinant interleukin-2 - LNL lymph node lymphocytes - BM basal medium - CM complete medium - HBSS Hanks balanced salt solution - JRU Japan reference unit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号