首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Niemann-Pick type C1 (NPC1) promotes the transport of LDL receptor (LDL-R)-derived cholesterol from late endosomes/lysosomes to other cellular compartments. NPC1-deficient cells showed impaired regulation of liver_X receptor (LXR) and sterol regulatory element-binding protein (SREBP) target genes. We observed that Apoe−/−Npc1−/− mice displayed a marked increase in total plasma cholesterol mainly due to increased VLDL, reflecting decreased clearance. Although nuclear SREBP-2 and Ldlr mRNA levels were increased in Apoe−/−Npc1−/− liver, LDL-R protein levels were decreased in association with marked induction of proprotein convertase subtilisin/kexin type 9 (Pcsk9) and inducible degrader of the LDL-R (Idol), both known to promote proteolytic degradation of LDL-R. While Pcsk9 is known to be an SREBP-2 target, marked upregulation of IDOL in Apoe−/−Npc1−/− liver was unexpected. However, several other LXR target genes also increased in Apoe−/−Npc1−/− liver, suggesting increased synthesis of endogenous LXR ligands secondary to activation of sterol biosynthesis. In conclusion, we demonstrate that NPC1 deficiency has a major impact on VLDL metabolism in Apoe−/− mice through modulation of hepatic LDL-R protein levels. In contrast to modest induction of hepatic IDOL with synthetic LXR ligands, a striking upregulation of IDOL in Apoe−/−Npc1−/− mice could indicate a role of endogenous LXR ligands in regulation of hepatic IDOL.  相似文献   

2.
LDL cholesterol (LDL-C) contributes to coronary heart disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases LDL-C by inhibiting LDL-C clearance. The therapeutic potential for PCSK9 inhibitors is highlighted by the fact that PCSK9 loss-of-function carriers exhibit 15–30% lower circulating LDL-C and a disproportionately lower risk (47–88%) of experiencing a cardiovascular event. Here, we utilized pcsk9−/− mice and an anti-PCSK9 antibody to study the role of the LDL receptor (LDLR) and ApoE in PCSK9-mediated regulation of plasma cholesterol and atherosclerotic lesion development. We found that circulating cholesterol and atherosclerotic lesions were minimally modified in pcsk9−/− mice on either an LDLR- or ApoE-deficient background. Acute administration of an anti-PCSK9 antibody did not reduce circulating cholesterol in an ApoE-deficient background, but did reduce circulating cholesterol (−45%) and TGs (−36%) in APOE*3Leiden.cholesteryl ester transfer protein (CETP) mice, which contain mouse ApoE, human mutant APOE3*Leiden, and a functional LDLR. Chronic anti-PCSK9 antibody treatment in APOE*3Leiden.CETP mice resulted in a significant reduction in atherosclerotic lesion area (−91%) and reduced lesion complexity. Taken together, these results indicate that both LDLR and ApoE are required for PCSK9 inhibitor-mediated reductions in atherosclerosis, as both are needed to increase hepatic LDLR expression.  相似文献   

3.
Low density lipoprotein (LDL) cholesterol is taken up into cells via clathrin-mediated endocytosis of the LDL receptor (LDLR). Following dissociation of the LDLR-LDL complex, LDL is directed to lysosomes whereas the LDLR recycles to the plasma membrane. Activation of the sterol-sensing nuclear receptors liver X receptors (LXRs) enhances degradation of the LDLR. This depends on the LXR target gene inducible degrader of the LDLR (IDOL), an E3-ubiquitin ligase that promotes ubiquitylation and lysosomal degradation of the LDLR. How ubiquitylation of the LDLR by IDOL controls its endocytic trafficking is currently unknown. Using genetic- and pharmacological-based approaches coupled to functional assessment of LDL uptake, we show that the LXR-IDOL axis targets a LDLR pool present in lipid rafts. IDOL-dependent internalization of the LDLR is independent of clathrin, caveolin, macroautophagy, and dynamin. Rather, it depends on the endocytic protein epsin. Consistent with LDLR ubiquitylation acting as a sorting signal, degradation of the receptor can be blocked by perturbing the endosomal sorting complex required for transport (ESCRT) or by USP8, a deubiquitylase implicated in sorting ubiquitylated cargo to multivesicular bodies. In summary, we provide evidence for the existence of an LXR-IDOL-mediated internalization pathway for the LDLR that is distinct from that used for lipoprotein uptake.  相似文献   

4.
The stability of a protein is regulated by a balance between its ubiquitylation and deubiquitylation. S-phase kinase-associated protein 2 (SKP2) is an oncogenic F-box protein that recognizes tumor suppressor substrates for targeted ubiquitylation by the E3 ligase SKP1-Cullin1-F-box and degradation by proteasome. SKP2 is itself ubiquitylated by the E3 ligases APC/CCDH1 and SCFFBXW2, and deubiquitylated by deubiquitylases (DUBs) USP10 and USP13. Given the biological significance of SKP2, it is likely that the other E3s or DUBs may also regulate its stability. Here, we report the identification and characterization of USP2 as a new DUB. We first screened a panel of DUBs and found that both USP2 and USP21 bound to endogenous SKP2, but only USP2 deubiquitylated and stabilized SKP2 protein. USP2 inactivation via siRNA knockdown or small-molecule inhibitor treatment remarkably shortened SKP2 protein half-life by enhancing its ubiquitylation and subsequent degradation. Unexpectedly, USP2-stabilized SKP2 did not destabilize its substrates p21 and p27. Mechanistically, USP2 bound to SKP2 via the leucine-rich repeat substrate-binding domain on SKP2 to disrupt the SKP2-substrate binding, leading to stabilization of both SKP2 and these substrates. Biologically, growth suppression induced by USP2 knockdown or USP2 inhibitor is partially mediated via modulation of SKP2 and its substrates. Our study revealed a new mechanism of the cross-talk among the E3–DUB substrates and its potential implication in targeting the USP2–SKP2 axis for cancer therapy.  相似文献   

5.
6.
7.
8.
9.
10.
11.
LCAT, a plasma enzyme that esterifies cholesterol, has been proposed to play an antiatherogenic role, but animal and epidemiologic studies have yielded conflicting results. To gain insight into LCAT and the role of free cholesterol (FC) in atherosclerosis, we examined the effect of LCAT over- and underexpression in diet-induced atherosclerosis in scavenger receptor class B member I-deficient [Scarab(−/−)] mice, which have a secondary defect in cholesterol esterification. Scarab(−/−)×LCAT-null [Lcat(−/−)] mice had a decrease in HDL-cholesterol and a high plasma ratio of FC/total cholesterol (TC) (0.88 ± 0.033) and a marked increase in VLDL-cholesterol (VLDL-C) on a high-fat diet. Scarab(−/−)×LCAT-transgenic (Tg) mice had lower levels of VLDL-C and a normal plasma FC/TC ratio (0.28 ± 0.005). Plasma from Scarab(−/−)×LCAT-Tg mice also showed an increase in cholesterol esterification during in vitro cholesterol efflux, but increased esterification did not appear to affect the overall rate of cholesterol efflux or hepatic uptake of cholesterol. Scarab(−/−)×LCAT-Tg mice also displayed a 51% decrease in aortic sinus atherosclerosis compared with Scarab(−/−) mice (P < 0.05). In summary, we demonstrate that increased cholesterol esterification by LCAT is atheroprotective, most likely through its ability to increase HDL levels and decrease pro-atherogenic apoB-containing lipoprotein particles.  相似文献   

12.
13.
Recent progress in engineering the genomes of large animals has spurred increased interest in developing better animal models for diseases where current options are inadequate. Here, we report the creation of Yucatan miniature pigs with targeted disruptions of the low-density lipoprotein receptor (LDLR) gene in an effort to provide an improved large animal model of familial hypercholesterolemia and atherosclerosis. Yucatan miniature pigs are well established as translational research models because of similarities to humans in physiology, anatomy, genetics, and size. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, male and female LDLR+/− pigs were generated. Subsequent breeding of heterozygotes produced LDLR−/− pigs. When fed a standard swine diet (low fat, no cholesterol), LDLR+/− pigs exhibited a moderate, but consistent increase in total and LDL cholesterol, while LDLR−/− pigs had considerably elevated levels. This severe hypercholesterolemia in homozygote animals resulted in atherosclerotic lesions in the coronary arteries and abdominal aorta that resemble human atherosclerosis. These phenotypes were more severe and developed over a shorter time when fed a diet containing natural sources of fat and cholesterol. LDLR-targeted Yucatan miniature pigs offer several advantages over existing large animal models including size, consistency, availability, and versatility. This new model of cardiovascular disease could be an important resource for developing and testing novel detection and treatment strategies for coronary and aortic atherosclerosis and its complications.  相似文献   

14.
Deubiquitinating enzymes (DUBs) counteract ubiquitin ligases to modulate the ubiquitination and stability of target signaling molecules. In Drosophila, the ubiquitin–proteasome system has a key role in the regulation of apoptosis, most notably, by controlling the abundance of the central apoptotic regulator DIAP1. Although the mechanism underlying DIAP1 ubiquitination has been extensively studied, the precise role of DUB(s) in controlling DIAP1 activity has not been fully investigated. Here we report the identification of a DIAP1-directed DUB using two complementary approaches. First, a panel of putative Drosophila DUBs was expressed in S2 cells to determine whether DIAP1 could be stabilized, despite treatment with death-inducing stimuli that would induce DIAP1 degradation. In addition, RNAi fly lines were used to detect modifiers of DIAP1 antagonist-induced cell death in the developing eye. Together, these approaches identified a previously uncharacterized protein encoded by CG8830, which we named DeUBiquitinating-Apoptotic-Inhibitor (DUBAI), as a novel DUB capable of preserving DIAP1 to dampen Drosophila apoptosis. DUBAI interacts with DIAP1 in S2 cells, and the putative active site of its DUB domain (C367) is required to rescue DIAP1 levels following apoptotic stimuli. DUBAI, therefore, represents a novel locus of apoptotic regulation in Drosophila, antagonizing cell death signals that would otherwise result in DIAP1 degradation.  相似文献   

15.
16.
17.
18.
Excessive absorption of intestinal cholesterol is a risk factor for atherosclerosis. This report examines the effect of cholecystokinin (CCK) on plasma cholesterol level and intestinal cholesterol absorption using the in vivo models of C57BL/6 wild-type and low density lipoprotein receptor knock-out (LDLR−/−) mice. These data were supported by in vitro studies involving mouse primary intestinal epithelial cells and human Caco-2 cells; both express CCK receptor 1 and 2 (CCK1R and CCK2R). We found that intravenous injection of [Thr28,Nle31]CCK increased plasma cholesterol levels and intestinal cholesterol absorption in both wild-type and LDLR−/− mice. Treatment of mouse primary intestinal epithelial cells with [Thr28,Nle31]CCK increased cholesterol absorption, whereas selective inhibition of CCK1R and CCK2R with antagonists attenuated CCK-induced cholesterol absorption. In Caco-2 cells, CCK enhanced CCK1R/CCK2R heterodimerization. Knockdown of both CCK1R and CCK2 or either one of them diminished CCK-induced cholesterol absorption to the same extent. CCK also increased cell surface-associated NPC1L1 (Niemann-Pick C1-like 1) transporters but did not alter their total protein expression. Inhibition or knockdown of NPC1L1 attenuated CCK-induced cholesterol absorption. CCK enhanced phosphatidylinositide 3-kinase (PI3K) and Akt phosphorylation and augmented the interaction between NPC1L1 and Rab11a (Rab-GTPase-11a), whereas knockdown of CCK receptors or inhibition of G protein βγ dimer (Gβγ) diminished CCK-induced PI3K and Akt phosphorylation. Inhibition of PI3K and Akt or knockdown of PI3K diminished CCK-induced NPC1L1-Rab11a interaction and cholesterol absorption. Knockdown of Rab11a suppressed CCK-induced NPC1L1 translocation and cholesterol absorption. These data imply that CCK enhances cholesterol absorption by activation of a pathway involving CCK1R/CCK2R, Gβγ, PI3K, Akt, Rab11a, and NPC1L.  相似文献   

19.

Background

During development, neuronal growth cones integrate diffusible and contact guidance cues that are conveyed to both actin and microtubule (MT) cytoskeletons and ensure axon outgrowth and pathfinding. Although several post-translational modifications of tubulin have been identified and despite their strong conservation among species, their physiological roles during development, especially in the nervous sytem, are still poorly understood.

Methodology/Findings

Here, we have dissected the role of a post-translational modification of the last amino acid of the α-tubulin on axonal growth by analyzing the phenotype of precerebellar neurons in Tubulin tyrosin ligase knock-out mice (TTL −/−) through in vivo, ex vivo and in vitro analyses. TTL −/− neurons are devoid of tyrosinated tubulin. Their pathway shows defects in vivo, ex vivo, in hindbrains open-book preparations or in vitro, in a collagen matrix. Their axons still orient toward tropic cues, but they emit supernumerary branches and their growth cones are enlarged and exhibit an emission of mis-oriented filopodia. Further analysis of the TTL −/− growth cone intracellular organization also reveals that the respective localization of actin and MT filaments is disturbed, with a decrease in the distal accumulation of Myosin IIB, as well as a concomitant Rac1 over-activation in the hindbrain. Pharmacological inhibition of Rac1 over-activation in TTL −/− neurons can rescue Myosin IIB localization.

Conclusions/Significance

In the growth cone, we propose that tubulin tyrosination takes part in the relative arrangement of actin and MT cytoskeletons, in the regulation of small GTPases activity, and consequently, in the proper morphogenesis, organization and pathfinding of the growth cone during development.  相似文献   

20.
Cbl-b, a member of the Cbl family of E3 ubiquitin ligases, plays an important role in the activation of lymphocytes. However, its function in platelets remains unknown. We show that Cbl-b is expressed in human platelets along with c-Cbl, but in contrast to c-Cbl, it is not tyrosine-phosphorylated upon glycoprotein VI (GPVI) stimulation. Cbl-b, unlike c-Cbl, is not required for Syk ubiquitylation downstream of GPVI activation. Phospholipase Cγ2 (PLCγ2) and Bruton''s tyrosine kinase (BTK) are constituently associated with Cbl-b. Cbl-b-deficient (Cbl-b−/−) platelets display an inhibition in the concentration-response curve for GPVI-specific agonist-induced aggregation, secretion, and Ca2+ mobilization. A parallel inhibition is found for activation of PLCγ2 and BTK. However, Syk activation is not affected by the absence of Cbl-b, indicating that Cbl-b acts downstream of Syk but upstream of BTK and PLCγ2. When Cbl-b−/− mice were tested in the ferric chloride thrombosis model, occlusion time was increased and clot stability was reduced compared with wild type controls. These data indicate that Cbl-b plays a positive modulatory role in GPVI-dependent platelet signaling, which translates to an important regulatory role in hemostasis and thrombosis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号