首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sub-lethal activation of cell death processes initiate pro-survival signaling cascades. As intracellular Zn2+ liberation mediates neuronal death pathways, we tested whether a sub-lethal increase in free Zn2+ could also trigger neuroprotection. Neuronal free Zn2+ transiently increased following preconditioning, and was both necessary and sufficient for conferring excitotoxic tolerance. Lethal exposure to NMDA led to a delayed increase in Zn2+ that contributed significantly to excitotoxicity in non-preconditioned neurons, but not in tolerant neurons, unless preconditioning-induced free Zn2+ was chelated. Thus, preconditioning may trigger the expression of Zn2+-regulating processes, which, in turn, prevent subsequent Zn2+-mediated toxicity. Indeed, preconditioning increased Zn2+-regulated gene expression in neurons. Examination of the molecular signaling mechanism leading to this early Zn2+ signal revealed a critical role for protein kinase C (PKC) activity, suggesting that PKC may act directly on the intracellular source of Zn2+. We identified a conserved PKC phosphorylation site at serine-32 (S32) of metallothionein (MT) that was important in modulating Zn2+-regulated gene expression and conferring excitotoxic tolerance. Importantly, we observed increased PKC-induced serine phosphorylation in immunopurified MT1, but not in mutant MT1(S32A). These results indicate that neuronal Zn2+ serves as an important, highly regulated signaling component responsible for the initiation of a neuroprotective pathway.  相似文献   

2.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   

3.
Abstract: Nitric oxide has been recognized in recent years as an important mediator of neuronal toxicity, which in many cases involves alterations of the cytoplasmic Ca2+ concentration ([Ca2+]i). In [Ca2+]i fluorimetric experiments on cultured hippocampal neurons, the nitric oxide-releasing agent S -nitrosocysteine produced a delayed rise in [Ca2+]i over a 20-min exposure, which was accompanied by a progressive slowing of the kinetics of recovery from depolarization-induced [Ca2+]i transients. These effects were blocked by oxyhemoglobin and by superoxide dismutase, confirming nitric oxide as the responsible agent, and suggesting that they involved peroxynitrite formation. Similar alterations of [Ca2+]i homeostasis were produced by the mitochondrial ATP synthase inhibitor oligomycin, and when an ATP-regenerating system was supplied via the patch pipette in combined whole-cell patch-clamp-[Ca2+]i fluorimetry experiments, S -nitrosocysteine had no effect on the resting [Ca2+]i or on the recovery kinetics of [Ca2+]i transients induced by direct depolarization. We conclude that prolonged exposure to nitric oxide disrupts [Ca2+]i homeostasis in hippocampal neurons by impairing Ca2+ removal from the cytoplasm, possibly as a result of ATP depletion. The resulting persistent alterations in [Ca2+]i may contribute to the delayed neurotoxicity of nitric oxide.  相似文献   

4.
Abstract: Increasing extracellular pH from 7.4 to 8.5 caused a dramatic increase in the time required to recover from a glutamate (3 µ M , for 15 s)-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in indo-1-loaded cultured cortical neurons. Recovery time in pH 7.4 HEPES-buffered saline solution (HBSS) was 126 ± 30 s, whereas recovery time was 216 ± 19 s when the pH was increased to 8.5. Removal of extracellular Ca2+ did not inhibit the prolongation of recovery caused by increasing pH. Extracellular alkalinization caused rapid intracellular alkalinization following glutamate exposure, suggesting that pH 8.5 HBSS may delay Ca2+ recovery by affecting intraneuronal Ca2+ buffering mechanisms, rather than an exclusively extracellular effect. The effect of pH 8.5 HBSS on Ca2+ recovery was similar to the effect of the mitochondrial uncoupler carbonyl cyanide p -(trifluoromethoxyphenyl)hydrazone (FCCP; 750 n M ). However, pH 8.5 HBSS did not have a quantitative effect on mitochondrial membrane potential comparable to that of FCCP in neurons loaded with a potential-sensitive fluorescent indicator, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide (JC-1). We found that the effect of pH 8.5 HBSS on Ca2+ recovery was completely inhibited by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157 (25 µ M ). This suggests that increased mitochondrial Ca2+ efflux via the mitochondrial Na2+/Ca2+ exchanger is responsible for the prolongation of [Ca2+]i recovery caused by alkaline pH following glutamate exposure.  相似文献   

5.
Abstract: In fetal rat brain neurons, activation of voltage-dependent Na+ channels induced their own internalization, probably triggered by an increase in intracellular Na+ level. To investigate the role of phosphorylation in internalization, neurons were exposed to either activators or inhibitors of cyclic AMP- and cyclic GMP-dependent protein kinases, protein kinase C, and tyrosine kinase. None of the tested compounds mimicked or inhibited the effect of Na+ channel activation. An increase in intracellular Ca2+ concentration induced either by thapsigargin, a Ca2+-ATPase blocker, or by A23187, a Ca2+ ionophore, was unable to provoke Na+ channel internalization. However, Ca2+ seems to be necessary because both neurotoxin- and amphotericin B-induced Na+ channel internalizations were partially inhibited by BAPTA-AM. The selective inhibitor of Ca2+/calmodulin-dependent protein kinase II, KN-62, caused a dose-dependent inhibition of neurotoxin-induced internalization due to a blockade of channel activity but did not prevent amphotericin B-induced internalization. The rate of increase in Na+ channel density at the neuronal cell surface was similar before and after channel internalization, suggesting that recycling of internalized Na+ channels back to the cell surface was almost negligible. Pretreatment of the cells with an acidotropic agent such as chloroquine prevented Na+ channel internalization, indicating that an acidic endosomal/lysosomal compartment is involved in Na+ channel internalization in neurons.  相似文献   

6.
Abstract: Amyloid β protein (Aβ), which accumulates in the senile plaques in the brain of Alzheimer's patients, is cytotoxic to neurons. A modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, in which a yellow redox dye, MTT, is reduced to purple formazan, is very sensitive to the effect of Aβ. In primary hippocampal cultures, inhibition of MTT reduction starts within 2 h after the addition of low concentrations of Aβ and reaches a plateau in 12 h. This effect of Aβ is not blocked by Ca2+ channel blockers or in Ca2+-free medium. In contrast, lactate dehydrogenase (LDH) release and trypan blue exclusion, which are indices of cell death, start 3 days after exposure to high concentrations of Aβ and are blocked by Ca2+ channel blockers such as Co2+, nicardipine, and diltiazem. When Aβ was washed out from the medium after 12 h, MTT reduction recovers and LDH release does not occur, suggesting that a long-lasting inhibition of the cellular redox system may be required to induce cell death. These observations demonstrate that Aβ toxicity consists of two phases—a Ca2+-independent early phase and a Ca2+-dependent late phase—and that the early phase may be required to induce the late phase.  相似文献   

7.
Abstract: The Ca2+/calmodulin-dependent phosphatase calcineurin may have physiological and pathological roles in neurons, but little is known about the roles of the enzyme in glial cells. We have previously reported that reperfusion of cultured astrocytes in Ca2+-containing medium after exposure to Ca2+-free medium caused Ca2+ influx followed by delayed cell death. In this study, we examined if calcineurin is involved in this Ca2+-mediated astrocytic injury. FK506, an inhibitor of calcineurin, protected cultured rat astrocytes against paradoxical Ca2+ challenge-induced injury in a dose-dependent manner (10−10–10−8 M ). Cyclosporin A at 1 µ M mimicked the effect of FK506. Rapamycin (1 µ M ) did not affect astrocyte injury, but it blocked the protective effect of FK506. Deltamethrin (20 n M ), another calcineurin inhibitor, had a similar protective effect, whereas okadaic acid did not. FK506 affected neither paradoxical Ca2+ challenge-induced increase in cytosolic Ca2+ level nor Na+-Ca2+ exchange activity in the cells, suggesting that the calcineurin is involved in processes downstream of increased cytosolic Ca2+ level. Immunochemical studies showed that both calcineurin A (probably the Aβ2 isoform) and B subunits were expressed in the cells. It is concluded that calcineurin is present in cultured astrocytes and it has a pathological role in the cells.  相似文献   

8.
Abstract: Human NT2-N neurons express Ca2+-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPA-GluRs) and become vulnerable to excitotoxicity when AMPA-GluR desensitization is blocked with cyclothiazide. Although the initial increase in intracellular Ca2+ levels ([Ca2+]i) was 1.9-fold greater in the presence than in the absence of cyclothiazide, Ca2+ entry via AMPA-GluRs in an early phase of the exposure was not necessary to elicit excitotoxicity in these neurons. Rather, subsequent necrosis was caused by a >40-fold rise in [Na+]i, which induced a delayed [Ca2+]i rise. Transfer of the neurons to a 5 m M Na+ medium after AMPA-GluR activation accelerated the delayed [Ca2+]i rise and intensified excitotoxicity. Low-Na+ medium-enhanced excitotoxicity was partially blocked by amiloride or dizocilpine (MK-801), and completely blocked by removal of extracellular Ca2+, suggesting that Ca2+ entry by reverse operation of Na+/Ca2+ exchangers and via NMDA glutamate receptors was responsible for the neuronal death after excessive Na+ loading. Our results serve to emphasize the central role of neuronal Na+ loading in AMPA-GluR-mediated excitotoxicity in human neurons.  相似文献   

9.
Oxidative stress and down-regulated trophic factors are involved in the pathogenesis of nigrostriatal dopamine(DA)rgic neurodegeneration in Parkinson's disease. Fibroblast growth factor 9 (FGF9) is a survival factor for various cell types; however, the effect of FGF9 on DA neurons has not been studied. The antioxidant melatonin protects DA neurons against neurotoxicity. We used MPP+ to induce neuron death in vivo and in vitro and investigated the involvement of FGF9 in MPP+ intoxication and melatonin protection. We found that MPP+ in a dose- and time-dependent manner inhibited FGF9 mRNA and protein expression, and caused death in primary cortical neurons. Treating neurons in the substantia nigra and mesencephalic cell cultures with FGF9 protein inhibited the MPP+-induced cell death of DA neurons. Melatonin co-treatment attenuated MPP+-induced FGF9 down-regulation and DA neuronal apoptosis in vivo and in vitro . Co-treating DA neurons with melatonin and FGF9-neutralizing antibody prevented the protective effect of melatonin. In the absence of MPP+, the treatment of FGF9-neutralizing antibody-induced DA neuronal apoptosis whereas FGF9 protein reduced it indicating that endogenous FGF9 is a survival factor for DA neurons. We conclude that MPP+ down-regulates FGF9 expression to cause DA neuron death and that the prevention of FGF9 down-regulation is involved in melatonin-provided neuroprotection.  相似文献   

10.
Abstract: Steroid hormones, particularly estrogens and glucocorticoids, may play roles in the pathogenesis of neurodegenerative disorders, but their mechanisms of action are not known. We report that estrogens protect cultured hippocampal neurons against glutamate toxicity, glucose deprivation, FeSO4 toxicity, and amyloid β-peptide (Aβ) toxicity. The toxicity of each insult was significantly attenuated in cultures pretreated for 2 h with 100 n M -10 µ M 17β-estradiol, estriol, or progesterone. In contrast, corticosterone exacerbated neuronal injury induced by glutamate, FeSO4, and Aβ. Several other steroids, including testosterone, aldosterone, and vitamin D, had no effect on neuronal vulnerability to the different insults. The protective actions of estrogens and progesterone were not blocked by actinomycin D or cycloheximide. Lipid peroxidation induced by FeSO4 and Aβ was significantly attenuated in neurons and isolated membranes pretreated with estrogens and progesterone, suggesting that these steroids possess antioxidant activities. Estrogens and progesterone also attenuated Aβ- and glutamate-induced elevation of intracellular free Ca2+ concentrations. We conclude that estrogens, progesterone, and corticosterone can directly affect neuronal vulnerability to excitotoxic, metabolic, and oxidative insults, suggesting roles for these steroids in several different neurodegenerative disorders.  相似文献   

11.
Somatodendritic voltage-dependent K+ currents (Kv4.2) channels mediate transient A-type K+ currents and play critical roles in controlling neuronal excitability. Accumulating evidence has indicated that Kv4.2 channels are key regulatory components of the signaling pathways that lead to synaptic plasticity. In contrast to the extensive studies of glutamate-induced AMPA [(±) α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrate] receptors redistribution, less is known about the regulation of Kv4.2 by glutamate. In this study, we report that brief treatment with glutamate rapidly reduced total Kv4.2 levels in cultured hippocampal neurons. The glutamate effect was mimicked by NMDA, but not by AMPA. The effect of glutamate on Kv4.2 was dramatically attenuated by pre-treatment of NMDA receptors antagonist MK-801 [(5 S ,10 R )-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate] or removal of extracellular Ca2+. Immunocytochemical analysis showed a loss of Kv4.2 clusters on the neuronal soma and dendrites following glutamate treatment, which was also dependent on the activation of NMDA receptors and the influx of Ca2+. Furthermore, whole-cell patch-clamp recordings revealed that glutamate caused a hyperpolarized shift in the inactivation curve of A-type K+ currents, while the activation curve remained unchanged. These results demonstrate a glutamate-induced alteration of Kv4.2 channels in cultured hippocampal neurons, which might be involved in activity-dependent changes of neuronal excitability and synaptic plasticity.  相似文献   

12.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

13.
Protective effects of ursolic acid and oleanolic acid in leukemic cells   总被引:5,自引:0,他引:5  
Ursolic acid (UA) and oleanolic acid (OA) have similar chemical structures but differ in the position of one methyl group on the ring E. We investigated protective effects of these two triterpenoic acids against H2O2-induced DNA damage in leukemic L1210, K562 and HL-60 cells using single-cell gel electrophoresis (SCGE). We compared their protective effects (antioxidant activities) with respect to the different position of the methyl group in their chemical structures. After 24 h pre-treatment of cells both compounds investigated inhibited significantly the incidence of DNA single strand breaks induced by H2O2. The concentration range of UA and OA was in all experiments 2.5–10 μmol/l. The antioxidant activity of OA determined by SCGE was significantly higher compared to UA in L1210 (+P < 0.05) and K562 cells (+++P < 0.001). Significant difference of the antioxidant activities of the two compounds was evidently connected with the different position of the methyl group. The protective effect of OA was in HL-60 cells slightly lower compared to the activity of UA, but the difference between the protective effects of UA and OA was not significant. In conclusion we can say that both natural pentacyclic triterpenoic acids investigated, UA and OA, manifested potent antioxidant effects. The different position of one methyl group in their chemical structures caused moderately different biological activities of these compounds on three leukemic cell lines. To explore their mechanisms of action further investigation seems to be therefore worthwhile.  相似文献   

14.
Abstract: Peroxidation of membrane lipids results in release of the aldehyde 4-hydroxynonenal (HNE), which is known to conjugate to specific amino acids of proteins and may alter their function. Because accumulating data indicate that free radicals mediate injury and death of neurons in Alzheimer's disease (AD) and because amyloid β-peptide (Aβ) can promote free radical production, we tested the hypothesis that HNE mediates Aβ25-35-induced disruption of neuronal ion homeostasis and cell death. Aβ induced large increases in levels of free and protein-bound HNE in cultured hippocampal cells. HNE was neurotoxic in a time- and concentration-dependent manner, and this toxicity was specific in that other aldehydic lipid peroxidation products were not neurotoxic. HNE impaired Na+,K+-ATPase activity and induced an increase of neuronal intracellular free Ca2+ concentration. HNE increased neuronal vulnerability to glutamate toxicity, and HNE toxicity was partially attenuated by NMDA receptor antagonists, suggesting an excitotoxic component to HNE neurotoxicity. Glutathione, which was previously shown to play a key role in HNE metabolism in nonneuronal cells, attenuated the neurotoxicities of both Aβ and HNE. The antioxidant propyl gallate protected neurons against Aβ toxicity but was less effective in protecting against HNE toxicity. Collectively, the data suggest that HNE mediates Aβ-induced oxidative damage to neuronal membrane proteins, which, in turn, leads to disruption of ion homeostasis and cell degeneration.  相似文献   

15.
Abstract Accumulation of Li+ in Saccharomyces cerevisiae X2180-1B occured via an apparent stoichiometric relationship of 1: 1 (K+/Li+) when S. cerevisiae was incubated in the presence of 5 and 10 mM LiCl for 3 h. Other cellular cations (Mg2+, Ca2+ and Na+) did not vary on Li+ accumulation, although lithium chemistry dictates a degree of similarity to Group I and II metal cations. Compartmentation of Li+ was mainly in the vacuole which accounted for 85% of the Li+ accumulated after a 6-h incubation period. The remainder was located in the cytosol with negligible amounts being bound to cell fragments including the cell wall. Transmission electron microscopy of Li+-loaded cells revealed enlarged vacuoles compared with control cells. This asymmetric cellular distribution may therefore enhance tolerance of S. cerevisiae to Li+ and ensure that essential metabolic processes in the cytosol are not disrupted.  相似文献   

16.
Abstract: Primary cultures of rat ventral mesencephalon were used to elucidate the role of chronic stimulation of dopamine (DA) D2 autoreceptors in the development of fetal dopaminergic neurons in vitro. Cultured dopaminergic neurons, as visualized by tyrosine hydroxylase immunocytochemistry, became more differentiated in the course of cultivation time and exhibited specific high-affinity uptake for [3H]DA. In rat striatal tissue, activation of D2 receptors has been shown to inhibit the release of DA. Previously accumulated [3H]DA was released from the cultures upon depolarization in a Ca2+-dependent manner. K+-evoked [3H]DA release could be inhibited by the selective D2 receptor agonists LY 171555 and N0437 in a concentration-dependent manner. The inhibitory effects of LY 171555 and N0437 were antagonized by the selective DA D2 receptor antagonist sulpiride. These observations are indicative for the expression of functional D2 receptors in the cultures. Daily treatment of these cultures for 7 days with LY 171555 or sulpiride did not lead to any change in protein content, the number of tyrosine hydroxylase-immunoreactive neurons, or the uptake capacity for [3H]DA. Our data demonstrate that chronic stimulation of DA D2 receptors does not impair survival or differentiation of cultured fetal dopaminergic neurons.  相似文献   

17.
Abstract: Elevated concentrations of extracellular K+ increased inositol phosphate accumulation in primary cultures of chick retinal photoreceptors and multipolar neurons. K+-evoked stimulation of inositol phosphate accumulation was greater in photoreceptor-enriched cell cultures than in cultures where multipolar neurons were the predominant cell type. Destroying multipolar neurons, but not photoreceptors, with kainic acid and N -methyl- d -aspartate did not reduce the K+-evoked stimulation of inositol phosphate accumulation. Both of these observations indicate that the observed effects occur in photoreceptor cells. The K+-evoked stimulation of inositol phosphate accumulation was blocked by omitting Ca2+ from the incubation medium or by adding the dihydropyridine-sensitive Ca2+-channel antagonists, nitrendipine and nifedipine. Bay K 8644, a dihydropyridine agonist, stimulated inositol phosphate accumulation and enhanced the effect of K+. ω-Conotoxin GVIA, an inhibitor of N-type Ca2+ channels, had no significant effect on K+-stimulated inositol phosphate accumulation. Pretreatment with pertussis toxin neither blocked K+-evoked inositol phosphate accumulation nor altered the inhibitory effect of nifedipine. K+-evoked inositol phosphate accumulation appears to reflect activation of phosphatidylinositol-specific phospholipase C, as it is inhibited by U-73122. These results indicate that Ca2+ influx through voltage-gated, dihydropyridine-sensitive channels activates phospholipase C in photoreceptor inner segments and/or synaptic terminals.  相似文献   

18.
Abstract: The chromaffin granule membrane in vitro is impermeable to protons as well as to Mg2+; however, when granules are incubated in the presence of the proton ionophore carbonyl cyanide p -trifluoromethoxy-phenylhydrazone or an inhibitor of the granule membrane Mg2+-dependent ATPase, the metal ion is accumulated inside the granules. This accumulation is dependent upon the granule transmembrane potential. The simultaneous presence of the ATPase inhibitor and the proton ionophore markedly increases metal ion incorporation. Mg2+ incorporation is also promoted by nigericin in the presence of potassium or sodium ions, indicating that Mg2+ accumulation is also dependent upon the transmembrane pH gradient. Concomitant with the Mg2+ accumulation, there is a significant loss of endogenous catecholamines. It is concluded that Mg2+ accumulation is determined by the electrochemical gradient maintained across the membrane. Once the metal ion has accumulated into the granules it displaces catecholamines from their storage sites.  相似文献   

19.
Abstract: Excitatory amino acid (EAA) receptors and EAA-mediated stimulation of polyphosphoinositide (poly-PI) turnover were studied in cultured neurons at different days in vitro (DIV). Six main observations have emerged from these studies: (a) Neurons increased their sensitivity to EAAs as a function of time in culture, indicated by increasing EAA-mediated poly-PI turnover, (b) Extracellular Ca2+ concentration played an important role in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-stimulated poly-PI turnover in cells at 4 DIV, whereas poly-PI turnover mediated by l -glutamate and trans -1-amino-cyclopentane-1,3-dicarboxylic acid was not Ca2+-dependent. (c) A marked stimulation of poly-PI turnover by AMPA was seen in the cultured neurons at 4 DIV, but not at 17 DIV, suggesting that a distinct EAA receptor sensitive to AMPA is transiently expressed, (d) The Ca2+ ionophore A23187 increased poly-PI turnover in cultured neurons, suggesting that Ca2+ entry is involved in stimulating poly-PI turnover, (e) Stimulation of poly-PI turnover by carbachol was greater in neurons at 17 DIV as compared with −4 DIV, and appeared to be Ca2+-dependent across DIV. (f) 6-Cyano-7-nitroquinoxaline-2,3-dione, an antagonist for non- N -methyl- d -aspartate ionotropic EAA receptors, inhibited 100% and 35% of AMPA-and quisqualate-induced poly-PI turnover, respectively, suggesting an involvement of ionotropic AMPA/quisqualate receptors in stimulating poly-PI turnover.  相似文献   

20.
Objectives:  The fate choice of neural progenitor cells could be dictated by local cellular environment of the adult CNS. The aim of our study was to investigate the effect of hippocampal tissue on differentiation and maturation of oligodendrocyte NG2 precursor cells.
Materials and methods:  Hippocampal slice culture was established from the brains of 7-day-old rats. NG2 precursor cells, obtained from a 12-day-old mixed primary culture of neonatal rat cerebral hemispheres, were labelled with chloromethyl-fluorescein-diacetete and seeded on the hippocampal slices. After 7–14 days in co-culture, cells were stained with neural markers.
Results:  NG2 cells differentiated predominantly into oligodendrocytes, presenting various stages of maturation: progenitors (NG2), pre-oligodendrocytes (O4) and finally mature GalC-positive cells. However, except for a few cells with astrocyte-specific S100b staining, a considerable number of these cells differentiated into neurons: TUJ+ and even MAP-2+ cells were frequently observed. Moreover, a certain population of these cells preserved proliferative properties of primary precursor cells, as revealed by Ki67 expression.
Conclusions:  The neuronal micro-environment provided by the culture of hippocampal slices is potent for induction of neurogenesis from oligodendrocyte NG2+/PDGFRα+/CNP+ progenitor cells and promotes their differentiation not only into macroglia but also into neurons. It also sustains their proliferative capacity. The results indicate the crucial role of the local cellular environment in fate decision of primary NG2+ multipotent neural progenitor cells, which may affect their behaviour after transplantation into the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号