首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of platelet secretion of ATP by phalloidin   总被引:1,自引:0,他引:1  
The involvement of actin in the secretion of ATP by platelets was studied using two stimulants, ADP and A23187, and two actin-mediating reagents, cytochalasin B and phalloidin. The degree of actin polymerization was determined using DNase I. Preincubation of platelets with cytochalasin B suppressed the polymerization of actin and ATP secretion induced by stimulants. In the absence of the stimulant, phalloidin-treated platelets exhibited time-dependent actin polymerization and the maximum level was reached at 5 min. No secretion of ATP was observed. The polymerization was enhanced by phalloidin when the platelets were preincubated for 3 to 5 min with the stimulants, but little ATP was secreted. After a 30-min preincubation, the amount of polymerized actin was lower than that after a 5-min incubation, and no ATP was secreted.  相似文献   

2.
Neutrophils are cells of the innate immune system that hunt and kill pathogens using directed migration. This process, known as chemotaxis, requires the regulation of actin polymerization downstream of chemoattractant receptors. Reciprocal interactions between actin and intracellular signals are thought to underlie many of the sophisticated signal processing capabilities of the chemotactic cascade including adaptation, amplification and long-range inhibition. However, with existing tools, it has been difficult to discern actin''s role in these processes. Most studies investigating the role of the actin cytoskeleton have primarily relied on actin-depolymerizing agents, which not only block new actin polymerization but also destroy the existing cytoskeleton. We recently developed a combination of pharmacological inhibitors that stabilizes the existing actin cytoskeleton by inhibiting actin polymerization, depolymerization and myosin-based rearrangements; we refer to these processes collectively as actin dynamics. Here, we investigated how actin dynamics influence multiple signalling responses (PI3K lipid products, calcium and Pak phosphorylation) following acute agonist addition or during desensitization. We find that stabilized actin polymer extends the period of receptor desensitization following agonist binding and that actin dynamics rapidly reset receptors from this desensitized state. Spatial differences in actin dynamics may underlie front/back differences in agonist sensitivity in neutrophils.  相似文献   

3.
Evidence that the phosphatidylinositol cycle is linked to cell motility   总被引:10,自引:0,他引:10  
Transmembrane signaling via specific ligand/receptor interactions induces the immediate polymerization of actin and formation of microfilament assemblies close to the plasma membrane. The profilin:actin complex appears to provide the actin for this filament formation. A clue to the nature of the regulatory mechanism involved was recently found in that phosphatidylinositol 4,5-bisphosphate can bind to profilin, dissociate the profilactin complex, and thus liberate actin for polymerization. This suggests that the phosphatidylinositol (PI) cycle, which plays important roles in cellular regulation, also might control microfilament-based motility. We show here that neomycin, a drug which has a high affinity for phosphoinositides and in vivo interferes with the PI cycle, inhibits the polymerization of actin in platelets induced either by thrombin or by ADP. When ADP was used as agonist (but not in the case of thrombin) the induction of actin polymerization could also be blocked by the addition of aspirin. Introduction of Ca2+ into platelets by the use of the ionophore A23187 or stimulation of protein kinase C (PkC) by the phorbol ester TPA did not induce actin polymerization; neither did the addition of a combination of these two agents. Retinoic acid which inhibits PkC was also without effect on thrombin-induced actin polymerization.  相似文献   

4.
We investigated the effects of the N-ethylmaleimide (NEM), a sulfhydryl(SH) radical blocker, on platelet activation. Platelet aggregation and ATP release was suppressed by 0.2 mM NEM during ADP (20 microM) stimulation and by 0.5 mM NEM during A23187 (4 microM) stimulation. However the agent had no effect on actin polymerization in stimulated platelets. In the absence of a stimulant, NEM (over 1 mM) induced shape changes and slight (5%) actin polymerization, but not aggregation or ATP release. Although platelet aggregation and ATP release were suppressed by the addition of 1 mM NEM during the process of both reactions, the amount of polymerized actin was not influenced by the addition. The reconstructed system consisting of actin and partially purified regulatory proteins without myosin showed a dose-dependent increase in turbidity by the addition of NEM. From these findings, we concluded that NEM enhances actin polymerization, although actin molecules contain SH-radicals, and that actin polymerization has little affect on aggregation and release reaction.  相似文献   

5.
M Coué  F Landon  A Olomucki 《Biochimie》1982,64(3):219-226
A new procedure of purification of actin from human blood platelets was used. This method starting from acetone powder of whole platelets gives a much higher yield than the one previously described (actin I) (Landon et al. (1977) Eur. J. Biochem., 81, 571-577). This actin II preparation has the same reduced viscosity as skeletal muscle actin, while the reduced viscosity of actin I preparation is about 1/10 of this value. Moreover actin I has the form of very short filaments as shown by electron microscopy. After an extra step of purification actin I, when polymerized, acquired a high reduced viscosity. We confirmed that platelet and sarcomeric actins are similar in their polymerization properties and their ability to activate muscular myosin. A circular dichroism study showed that the overall conformation of both actins are similar, but the environment of their aromatic chromophores is different.  相似文献   

6.
Regulation of actin polymerization by membrane fraction of platelets   总被引:1,自引:0,他引:1  
We studied the interaction between the purified membrane fraction of human platelets and the polymerization of skeletal actin. The viscosity of actin was measured by the falling ball method. The fraction suppressed the polymerization of actin in the presence of 20 mM KCl and 0.4 mM EGTA. The addition of calcium ion or thrombin to the fraction did not cause suppression. A DNase I affinity column bound the membrane fraction in the presence of calcium ion. The frozen membrane fraction and the vesicles reconstituted with lipids from the platelet membrane enhanced the polymerization of actin. Trypsinized membrane fraction and the membrane fraction treated with phospolipase A2 enhanced the polymerization of actin, but membrane fraction treated with phospholipase C had no effect. The reconstituted membrane vesicles mentioned above lowered the critical concentration for actin polymerization. These findings suggested that the polymerization of intracellular actin is enhanced not only by the mobilization of calcium ion, but also by biochemical changes in the membrane lipids.  相似文献   

7.
Platelet function is inhibited by agents such as prostaglandin E1 (PGE1) that elevate the cytoplasmic concentration of cyclic AMP. Inhibition presumably results from the cyclic AMP-stimulated phosphorylation of intracellular proteins. Polypeptides that become phosphorylated are actin-binding protein, P51 (Mr = 51,000), P36 (Mr = 36,000), P24 (Mr = 24,000), and P22 (Mr = 22,000). Recently, we identified P24 as the beta-chain of glycoprotein (GP) Ib, a component of the plasma membrane GP Ib.IX complex. The existence of Bernard-Soulier syndrome, a hereditary disorder in which platelets selectively lack the GP Ib.IX complex, enabled us to examine whether the phosphorylation of GP Ib beta (P24) is responsible for any of the inhibitory effects of elevated cyclic AMP on platelet function. Exposure of control platelets to PGE1 increased phosphorylation of actin-binding protein, P51, P36, GP Ib beta, and P22. Prostaglandin E1 induced the same phosphorylation reactions in Bernard-Soulier platelets, except that of GP Ib beta, which is absent. In control platelets, PGE1 inhibited collagen-induced phosphorylation of myosin light chain, phosphorylation of P47 (an unidentified Mr 47,000 cytoplasmic protein that is phosphorylated by protein kinase C in stimulated platelets), aggregation, and the secretion of granule contents. Despite the absence of GP Ib beta, PGE1 also inhibited these collagen-induced responses in Bernard-Soulier platelets. However, while PGE1 inhibited collagen-induced polymerization of actin in control platelets, it did not inhibit actin polymerization in Bernard-Soulier platelets. These results suggest that cyclic AMP-induced phosphorylation of GP Ib inhibits collagen-induced actin polymerization in platelets. Because actin polymerization is required for at least some of the functional responses of platelets to an agonist, phosphorylation of Gp Ib beta may be one way in which cyclic AMP inhibits platelet function.  相似文献   

8.
Actin polymerization in cellular oxidant injury   总被引:4,自引:0,他引:4  
Microfilaments undergo an ATP-dependent disruption into shortened bundles following cellular exposure to oxidants. This phenomenon does not require a net change in the amount of polymerized actin. However, increased amounts of polymerized actin have been detected in oxidant-injured cells and it was the purpose of this study to determine the conditions under which the actin polymerization may occur. Utilizing the formation of oxidized glutathione (GSSG) as an indicator of cellular sulfhydryl oxidation, conditions were chosen to accentuate sulfhydryl oxidation within the target P388D1 cell line following exposure to the oxidants, H2O2 and diamide. Using the DNase I and flow cytometric assays of actin polymerization, significant polymerization of actin was detected only under conditions in which sulfhydryl oxidation occurred after exposure to the two oxidizing agents. Greater sulfhydryl oxidation early in the course of injury was associated with a greater rate and extent of actin polymerization in the injured cells. Experiments with cells depleted of glutathione (GSH) demonstrated that neither loss of GSH nor absolute levels of GSSG formed during oxidant exposure were responsible for the polymerization of actin. The data presented are consistent with the hypothesis that oxidizing conditions which induce significant sulfhydryl oxidation in target cells are correlated with assembly of polymerized actin and that this represents a process which is distinct and separate from the ATP-dependent gross disruption of microfilaments.  相似文献   

9.
In vitro incubation of Ehrlich ascites tumor cells in the presence of norepinephrine induced desensitization of adenylate cyclase to the later norepinephrine stimulation. Such a desensitization was not accompanied by a decrease in the number of receptor sites. Formation of actin filaments from actin monomers was not changed in the desensitized cells, whereas polymerization of tubulin was significantly increased. The increase in the polymerization was dependent on the concentration of norepinephrine.  相似文献   

10.
Isolation of low molecular weight actin-binding proteins from porcine brain   总被引:9,自引:0,他引:9  
Three new actin-binding proteins having molecular weights of 26,000, 21,000, and 19,000 were isolated from porcine brain by DNase I affinity column chromatography. These proteins were released from the DNase I column by elution with a solution of high ionic strength. They were further purified by column chromatographies using hydroxyapatite, phosphocellulose, and Sephadex G-75. All of these actin-binding proteins behaved as monomeric particles in the gel filtration chromatography. After elution of the three actin-binding proteins, actin and profilin were recovered from the DNase I column with 2 M urea solution. The eluted was further purified by a cycle of polymerization and depolymerization and finally by gel filtration. Little difference in polymerizability was detected between the purified brain actin and muscle actin. After sedimentation of the polymerized brain actin, profilin was purified by DEAE-cellulose and gel filtration column chromatographies. In the assay of the action of these actin-binding proteins, the 26K protein was found to cause a large decrease in the rate of actin polymerization, while showing little effect on the extent of polymerization. The 21K protein decreased the steady-state viscosity of actin solution in a concentration-dependent manner irrespective of whether it was added before or after actin polymerization. It reacted with actin at a 1:1 molar ratio.  相似文献   

11.
The regulation of prostaglandin stimulated cAMP accumulation in cells of the human T-cell leukemia line Jurkat was examined. Pretreatment with PGE2 (0.1-10 nM) for 2 hour caused a concentration dependent desensitization of the prostaglandin receptor. Tumor promoting phorbol esters (1-1000 nM) could also inhibit PGE2 stimulated cAMP production dose dependently. Inhibition of tubulin polymerization with colchicine or nocodazole (1 microM) eliminated prostaglandin but not phorbol ester induced desensitization of the receptor. It is concluded that agonist and phorbol ester induced desensitization are mediated by two distinct mechanisms and that tubulin polymerization appear to be required only for agonist induced desensitization of the prostaglandin receptor.  相似文献   

12.
Actin filament content and organization in unstimulated platelets   总被引:13,自引:9,他引:4       下载免费PDF全文
The extent of actin polymerization in unstimulated, discoid platelets was measured by DNase I inhibition assay in Triton X-100 lysates of platelets washed at 37 degrees C by gel filtration, or in Triton X-100 lysates of platelets washed at ambient temperatures by centrifugation in the presence of prostacyclin. About 40% of the actin in the discoid platelets obtained by either method existed as filaments. These filaments could be visualized by electron microscopy of thin sections. Similar results were obtained when the actin filament content of discoid platelets was measured by sedimentation of filaments from Triton X-100 lysates at high g forces (145,000 g for 45 min). However, few of these filaments sedimented at the lower g forces often used to isolate networks of actin filaments from cell extracts. These results indicate that actin filaments in discoid cells are not highly crosslinked. Platelets isolated by centrifugation in the absence of prostacyclin were not discoid, but were instead irregular with one or more pseudopodia. These platelets also contained approximately 40-50% of their actin in a filamentous form; many of these filaments sedimented at low g forces, however, indicating that they were organized into networks. The discoid shape of these centrifuged platelets could be restored by incubating them for 1-3 h at 37 degrees C, which resulted in the reversal of filament organization. High g forces were then required for the sedimentation of the actin. Approximately 80-90% of the actin in platelets washed at 4 degrees C was filamentous; this high actin filament content could be attributed to actin polymerization during the preparation of the platelets at low temperatures. These studies show that platelet activation involves mechanisms for the structural reorganization of existing filaments, in addition to those previously described for mediating actin polymerization.  相似文献   

13.
Secondary signals mediated by GPIIb/IIIa in thrombin-activated platelets   总被引:3,自引:0,他引:3  
We have previously found that stimulation of aequorin-loaded platelets by thrombin produced a two-peaked increase in intracellular free calcium concentration ([Ca2+]i), and the development of the second peak of [Ca2+]i was closely related with the aggregation. In this report, we studied the interrelationship between the GPIIb/IIIa complex, aggregation, cytoskeletons and [Ca2+]i of platelets. The pretreatment of the platelets with dihydrocytochalasin B (4 microM), an actin polymerization inhibitor, did not inhibit aggregation and TXB2 production, but did inhibit both actin polymerization and the second peak of [Ca2+]i increase induced by thrombin, suggesting that actin polymerization and the second peak of [Ca2+]i are interrelated. GRGDSP (100 microM), a synthetic anti-adhesive peptide, has already been reported to inhibit platelet aggregation and the second peak of [Ca2+]i induced by thrombin. It also inhibited actin polymerization and TXB2 production, suggesting that aggregation was important for not only the generation of the second peak of [Ca2+]i but also for actin polymerization and TXB2 production. PGI2 (5 nM) did not abolish but only delayed aggregation, TXB2 production, actin polymerization and the second peak of [Ca2+]i increase. These findings suggest that the secondary signals are caused by aggregation (fibrinogen-binding to the GPIIb/IIIa) in thrombin-aggregated platelets, which results in the TXA2 production and the secondary peak of [Ca2+]i increase, and the latter was dependent on actin polymerization.  相似文献   

14.
We have recently observed that small GTP-binding proteins are important for mediation of store-mediated Ca(2+) entry in human platelets through the reorganization of the actin cytoskeleton. Because it has been shown in platelets and other cells that small GTP-binding proteins regulate the activity of phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase, whose products, phosphoinositides, play a key role in the reorganization of the actin cytoskeleton, we have investigated the role of these lipid kinases in store-mediated Ca(2+) entry. Treatment of platelets with LY294002, an inhibitor of phosphatidylinositol 3- and phosphatidylinositol 4-kinases, resulted in a concentration-dependent inhibition of Ca(2+) entry stimulated by thapsigargin or the physiological agonist, thrombin. In addition, wortmannin, another inhibitor of these kinases, which is structurally unrelated to LY294002, significantly reduced store-mediated Ca(2+) entry. The inhibitory effect of LY294002 was not mediated either by blockage of Ca(2+) channels or by modification of membrane potential. LY294002 inhibited actin polymerization stimulated by thrombin or thapsigargin. These results indicate that both phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase are required for activation of store-mediated Ca(2+) entry in human platelets and that the mechanism could involve the reorganization of the actin cytoskeleton.  相似文献   

15.
Polymerized and depolymerized forms of tubulin were measured in rat and mouse liver, rat islets, human lymphocytes, and platelets. The percent of the total tubulin present in the polymerized form varied from 30.3 +/- 1.5% in the liver of the fed rat to 89.2 +/- 0.2% in human platelets. Fasting decreased the total tubulin and to a greater extent the polymerized form of tubulin in both rat and mouse liver. Glucose feeding increased the polymerized tubulin without affecting the total tubulin content in rat liver. Phytohemagglutinin-stimulated lymphocytes exhibited at least a three-fold increase in total tubulin (expressed in terms of DNA content), which during the initial 48 h of incubation was accounted for in toto by an increase in polymerized tubulin. It is suggested that the lectin not only accelerates tubulin synthesis but also stimulated the polymerization process. Storage of platelets at 4 degrees C for 6 days resulted in a marked decrease in total tubulin and an even greater reduction in the polymerized form. It is concluded that both the total tubulin content and its degree of polymerization can be modulated independently by a wide variety of physiological factors.  相似文献   

16.
Actin-stimulated myosin Mg2+-ATPase inhibition by brain protein   总被引:1,自引:0,他引:1  
A low-molecular-weight protein, isolated from bovine brain, inhibits the actin-stimulated Mg-ATPase activity of myosin from striated muscle. This inhibition is probably related to its ability to cause actin to revert from its polymerized to its depolymerized state and to prevent the polymerization of actin. Its effect on the polymeric state of the actin has been demonstrated by viscosity studies. DNase inhibition assay, and electron microscopy. Heavy meromyosin can overcome the effect of the brain protein and stimulate the polymerization of actin. The inhibition of ATPase activity is in part dependent upon the relative amounts of brain protein, actin, and myosin. The apparent molecular weight of the brain protein is approximately 20,000 daltons. It appears to be a heat-labile glycoprotein containing 5-6% carbohydrate.  相似文献   

17.
Rate of binding of tropomyosin to actin filaments   总被引:1,自引:0,他引:1  
A Wegner  K Ruhnau 《Biochemistry》1988,27(18):6994-7000
The decrease of the rate of actin polymerization by tropomyosin molecules which bind near the ends of actin filaments was analyzed in terms of the rate of binding of tropomyosin to actin filaments. Monomeric actin was polymerized onto actin filaments in the presence of various concentrations of tropomyosin. At high concentrations of monomeric actin (c1) and low tropomyosin concentrations (ct) (c1/ct greater than 10), actin polymerization was not retarded by tropomyosin because actin polymerization was faster than binding of tropomyosin to actin filaments. At low actin concentrations and high tropomyosin concentrations (c1/ct less than 5), the rate of elongation of actin filaments was decreased because actin polymerization was slower than binding of tropomyosin at the ends of actin filaments. The results were quantitatively analyzed by a model in which it was assumed that actin-bound tropomyosin molecules which extend beyond the ends of actin filaments retard association of actin monomers with filament ends. Under the experimental conditions (100 mM KCl, 1 mM MgCl2, pH 7.5, 25 degrees C), the rate constant for binding of tropomyosin to actin filaments turned out to be about 2.5 X 10(6) to 4 X 10(6) M-1 S-1.  相似文献   

18.
Mechanism of action of phalloidin on the polymerization of muscle actin   总被引:21,自引:0,他引:21  
Under conditions where muscle actin only partially polymerizes, or where it does not polymerize at all, a significant enhancement of polymerization was observed if equimolar phalloidin was also present. The increased extent of polymerization in the the presence of phalloidin can be explained by the reduced critical actin concentration of partially polymerized populations at equilibrium. Under such conditions, the rate of polymerization, as judged by the length of time to reach half the viscosity plateau, was found to be essentially independent of the phalloidin concentration. Moreover, the initial rate of polymerization of actin was also found to be independent of phalloidin concentration. However, phalloidin apparently causes a reduction in the magnitude of the reverse rates in the polymerization reaction, as was demonstrated by the lack of depolymerization of phalloidin-treated actin polymers. This effect of phalloidin is also supported by the identification of actin nuclei and short polymers in populations of G-actin incubated with phalloidin in the absence of added KCl. Our conclusion, then, is that phalloidin influences the polymerization of actin by stabilizing nuclei and polymers as they are formed.  相似文献   

19.
Polymerization of Actin from Maize Pollen   总被引:3,自引:0,他引:3       下载免费PDF全文
Yen LF  Liu X  Cai S 《Plant physiology》1995,107(1):73-76
Here we describe the in vitro polymerization of actin from maize (Zea mays) pollen. The purified actin from maize pollen reported in our previous paper (X. Liu, L.F. Yen [1992] Plant Physiol 99: 1151-1155) is biologically active. In the presence of ATP, KCl, and MgCl2 the purified pollen actin polymerized into filaments. During polymerization the spectra of absorbance at 232 nm increased gradually. Polymerization of pollen actin was evidently accompanied by an increase in viscosity of the pollen actin solution. Also, the specific viscosity of pollen F-actin increased in a concentration-dependent manner. The ultraviolet difference spectrum of pollen actin is very similar to that of rabbit muscle actin. The activity of myosin ATPase from rabbit muscle was activated 7-fold by the polymerized pollen actin (F-actin). The actin filaments were visualized under the electron microscope as doubly wound strands of 7 nm diameter. If cytochalasin B was added before staining, no actin filaments were observed. When actin filaments were treated with rabbit heavy meromyosin, the actin filaments were decorated with an arrowhead structure. These results imply that there is much similarity between pollen and muscle actin.  相似文献   

20.
Actin polymerization as part of the normal smooth muscle response to various stimuli has been reported. The actin dynamics are believed to be necessary for cytoskeletal remodeling in smooth muscle in its adaptation to external stress and strain and for maintenance of optimal contractility. We have shown in our previous studies in airway smooth muscle that myosins polymerized in response to contractile activation as well as to adaptation at longer cell lengths. We postulated that the same response could be elicited from actins under the same conditions. In the present study, actin filament formation was quantified electron microscopically in cell cross sections. Nanometer resolution allowed us to examine regional distribution of filaments in a cell cross section. Airway smooth muscle bundles were fixed in relaxed and activated states at two lengths; muscle preparations were also fixed after a period of oscillatory strain, a condition known to cause depolymerization of myosin filaments. The results indicate that contractile activation and increased cell length nonsynergistically enhanced actin polymerization; the extent of actin polymerization was substantially less than that of myosin polymerization. Oscillatory strain increased thin filament formation. Although thin filament density was found higher in cytoplasmic areas near dense bodies, contractile activation did not preferentially enhance actin polymerization in these areas. It is concluded that actin thin filaments are dynamic structures whose length and number are regulated by the cell in response to changes in extracellular environment and that polymerization and depolymerization of thin filaments occur uniformly across the whole cell cross section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号