首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The starch-statolith theory of gravity reception has been tested with a mutant of Arabidopsis thaliana (L.) Heynh. which, lacking plastid phosphoglucomutase (EC 2.7.5.1) activity, does not synthesize starch. The hypocotyls and seedling roots of the mutant were examined by light and electron microscopy to confirm that they did not contain starch. In upright wild-type (WT) seedlings, starch-filled plastids in the starch sheath of the hypocotyl and in three of the five columellar layers of the root cap were piled on the cell floors, and sedimented to the ceilings when the plants were inverted. However, starchless plastids of the mutant were not significantly sedimented in these cells in either upright or inverted seedlings. Gravitropism of light-grown seedling roots was vigorous: e.g., 10o curvature developed in mutants rotated on a clinostat following a 5 min induction at 1 · g, compared with 14o in the WT. Curvatures induced during intervals from 2.5 to 30 min were 70% as great in the mutant as the WT. Thus under these conditions the presence of starch and the sedimentation of plastids are unnecessary for reception of gravity by Arabidopsis roots. Gravitropism by hypocotyls of light-grown seedlings was less vigorous than that by roots, but the mutant hypocotyls exhibited an average of 70–80% as much curvature as the WT. Roots and hypocotyls of etiolated seedlings and flower stalks of mature plants were also gravitropic, although in these cases the mutant was generally less closely comparable to the WT. Thus, starch is also unnecessary for gravity reception in these tissues.Abbreviations PAR photosynthetically active radiation - PAS periodic acid-Schiff's reagent - PGM phosphoglucomutase - WT wild-type  相似文献   

2.
Gravitropism in dark-grown hypocotyls of the wild type was compared with a starch-deficient Nicotiana sylvestris mutant (NS 458) to test the effects of starch deficiency on gravity sensing. In a time course of curvature measured using infrared video, the response of the mutant was greatly reduced compared to the wild type; 72 hours after reorientation, curvature was about 10° for NS 458 and about 70° for wild type. In dishes maintained in a vertical orientation, wild-type hypocotyls were predominantly vertical, whereas NS 458 hypocotyls were severely disoriented with about 5 times more orientational variability than wild type. Since the growth rates were equal for both genotypes and phototropic curvature was only slightly inhibited in NS 458, the mutation probably affects gravity perception rather than differential growth. Our data suggest that starch deficiency reduces gravitropic sensitivity more in dark-grown hypocotyls than in dark- or light-grown roots in this mutant and support the hypothesis that amyloplasts function as statoliths in shoots as well as roots.  相似文献   

3.
Ten Arabidopsis lines that carry recessive mutations in the cop1 (constitutively photomorphogenic) locus have been isolated. These lines define at least four different alleles. All of the mutant lines produce dark-grown seedlings that mimic wild-type seedlings grown in the light. The phenotype of the dark-grown mutant seedlings includes: short hypocotyls, open and enlarged cotyledons, accumulation of anthocyanin, cell-type differentiation and chloroplast-like plastid differentiation in cotyledons. Moreover, in more prolonged dark-growth periods the mutants exhibit true leaf development that parallels that in light-grown siblings. The four mutant alleles represent two types of mutations: three alleles (cop 1-1, cop 1-2, and cop 1-3) have severely affected phenotypes whereas one allele (cop 1-4) has a less severe phenotype. Compared to the severe alleles, the cop 1-4 mutant has slightly longer hypocotyls in dark-grown seedlings and does not accumulate abnormal levels of anthocyanin. The cop1–1/cop1-4 hybrid seedlings are intermediate in many physiological properties under both dark- and light-growth conditions, relative to the two parents. These results may suggest that the extent of residual cop1 gene activity in the mutants dictates the degree to which the aberrant plant phenotype is expressed. Analysis of plants carrying both cop1 and hy, a mutation that results in a deficiency of active phyto-chrome, suggests that the cop1 gene product acts downstream of phytochrome. The differentiation of chloroplasts in the roots of light-grown cop1 plants but not in wild-type plants suggests that the wild-type cop1 gene product also normally plays a role in suppressing chloroplast development in the roots of light-grown plants. To aid the eventual molecular cloning of the cop1 locus, its chromosomal location has been mapped and a molecular marker that is located about 1 centimorgan away from the cop1 locus obtained.  相似文献   

4.
Arabidopsis , aux1-7, axr1-3 and axr2-1, grown in a natural sandy soil, without sucrose supplementation. The three mutants showed impaired epidermal cell elongation in the hypocotyls of 15-day-old seedlings, with axr2-1 showing the most marked effects. In addition, the roots of axr2-1 elongated faster and presented a more extended meristematic zone than the other genotypes. Unchanged epidermal cell length in the differentiation zone of axr2-1 relative to the wild-type suggested enhancement of cell proliferation. These alterations may have affected the timing and site of emergence of the root hairs, starting later and further from the root tip than in the other genotypes. Similarly to the wild-type, no root hair growth was initiated in axr2-1 drought-induced short roots, although the epidermis was differentiated into trichoblasts and atrichoblasts. On rehydration of the short roots, hair formation occurred from trichoblasts prior to epidermal cell elongation. Therefore, auxin-insensitivity in the axr2-1 mutant did not result in alterations of the hair-forming process itself. The differential development of axr2-1 seedlings, relative to the other auxin-insensitive mutants, suggested that the AXR2 gene has a complex, regulatory function in multiple hormone signaling. Received 26 July 2000/ Accepted in revised form 28 February 2001  相似文献   

5.
Phototropic stimulation of dark-grown hypocotyls of Arabidopsis thaliana increased a growth inhibitor in the wild-type but not in the non-phototropic nph3-101 mutant. From light-grown wild-type shoots the inhibitor was isolated and identified as indole-3-acetonitrile (IAN) from its 1H NMR spectrum. The content of endogenous IAN in the hypocotyls of wild-type and mutant unilaterally exposed to blue light was determined using a physicochemical assay. The IAN concentration (28 M) in the phototropically stimulated wild-type hypocotyls was about three times larger than in the dark control. However, its content in the mutant hypocotyls did not change. IAN inhibited the hypocotyl growth of the nph3-101 to the same extent as in the wild-type at concentrations higher than 10 M. These results suggest that IAN plays a role in the phototropism of Arabidopsis thaliana hypocotyls.  相似文献   

6.
Guo D  Gao X  Li H  Zhang T  Chen G  Huang P  An L  Li N 《Plant molecular biology》2008,66(4):345-360
Egy1 was isolated as an ethylene-dependent gravitropism-deficient Arabidopsis mutant. Molecular studies reveal that EGY1 gene encodes a 59-kDa plastid-targeted metalloprotease. It is actively expressed in hypocotyl tissue and targets to endodermal and cortex plastid. Its protein level is up-regulated by both ethylene and light. CAB protein accumulation and chlorophyll level is severely reduced in hypocotyls and endodermal cells, respectively. Sucrose is able to restore the severely reduced starch and lipid contents as well as the deficient endodermal plastid size found in light-grown egy1 hypocotyls yet it fails to rescue the reduced plastid number and chlorophyll level in egy1 endodermal cells. The loss-of-function egy1 mutation results in a smaller size (1.9 ± 0.3 μm in diameter) and less number (5 ± 1) of plastids in endodermal cells, which are nearly 50% of the wild-type. EGY1 is specially required for the development of full-size endodermal plastid in seedlings that are grown on sucrose-free media under light. It plays a direct role in controlling the light-induced chlorophyll production, grana formation and plastid replication in endodermal cell. However, it plays an indirect role in regulation of endodermal plastid size. It is likely that the ethylene-dependent gravitropism-deficient phenotype of egy1 hypocotyls may result from the smaller size and less number of endodermal plastids. Gravicurvature assays performed on ethylene-insensitive mutants, etr1-1, etr2-1, ers2-1, ein4-1 and ein2-5, have clearly demonstrated the necessary role for ethylene in vigorous gravitropism of light-grown hypocotyls. The degree of ethylene-dependent gravicurvature is positively correlated with the combined state of endodermal plastid mass and number. Neither ethylene nor EGY1-regulated full-size endodermal plastid is sufficient for promotion of vigorous hypocotyl gravitropism. Presence of 4 full-size plastids per endodermal cell together with ethylene pretreatment of hypocotyls becomes sufficient to trigger vigorous gravicurvature in light-grown seedlings. A model is therefore proposed to address the role of EGY1 in regulation of endodermal plastid size and number as well as the stimulatory effect of ethylene on hypocotyl gravitropism.  相似文献   

7.
Growth-curvature responses of hypocotyls of Arabidopsis thaliana (L.) Heynh. were measured in double mutants between msg1 and axr1, both of which are auxin-resistant and defective in hypocotyl growth curvature induced upon unilateral application of auxin. The msg1 axr1 double mutants showed no auxin-induced growth curvature, that is, they exhibited the msg1 phenotype, though the axr1 defects were partial. Hypocotyls of both the msg1 and axr1 mutants were partially defective in second-positive phototropism, whereas the double mutants lost the response completely. When grown on vertically held agar plates, the axr1 mutant showed normal hypocotyl gravitropism and the mutation did not affect the reduced hypocotyl gravitropism of msg1. Hypocotyls of msg1 and axr1 mutants grew upward like wild-type ones when grown along an agar surface, while they grew more randomly when grown without an agar support, suggesting that axr1 hypocotyls are not completely normal in gravitropism. The extent of defects in growth orientation increased in the order: msg1 axr1 double mutants > msg1 > axr1 > wild type. The hypocotyls of these mutants showed auxin resistance in the order: msg1 axr1 > axr1 > msg1 > wild type. The msg1 mutant had epinastic leaves and axr1 had wrinkled leaves; leaves of the msg1 axr1 double mutants were epinastic and wrinkled. These results suggest that MSG1 and AXR1 act independently in separate pathways of the reactions tested in the present study. In contrast, the phenotype of the msg1 aux1 double mutants shows that AUX1 is not significantly involved in these phenomena. Received: 12 July 1998 / Accepted: 16 August 1998  相似文献   

8.
As indicated by various and some overlapped phenotypes of the dominant mutants, the Aux/IAA genes of Arabidopsis (Arabidopsis thaliana) concomitantly exhibit a functional similarity and differentiation. To evaluate the contributions of their expression patterns determined by promoter activity and molecular properties of their gene products to Aux/IAA function, we examined phenotypes of transgenic plants expressing the green fluorescent protein (GFP)-tagged msg2-1/iaa19, axr2-1/iaa7, or slr-1/iaa14 cDNA by the MSG2 or AXR2 promoter. When driven by the MSG2 promoter (pMSG2), each GFP-tagged cDNA caused the msg2-1 phenotype, that is, the wild-type stature in the mature-plant stage, long and straight hypocotyls in the dark, reduced lateral root formation, relatively mild agravitropic traits in hypocotyls, and a normal gravitropic response in roots. However, development of one or two cotyledonary primordia was often arrested in embryogenesis of the pMSG2::axr2-1::GFP and pMSG2::slr-1::GFP plants, resulting in monocotyledonary or no cotyledonary seedlings. Such defects in embryogenesis were never seen in pMSG2::msg2-1::GFP or the msg2-1, axr2-1, or slr-1 mutant. The MSG2 promoter-GUS staining showed that expression of MSG2 started specifically in cotyledonary primordia of the triangular-stage embryos. When driven by the AXR2 promoter (pAXR2), each GFP-tagged mutant cDNA caused, in principle, aberrant aboveground phenotypes of the corresponding dominant mutant. However, either the axr2-1::GFP or slr-1::GFP cDNA brought about dwarf, agravitropic stems almost identical to those of axr2-1, and the pAXR2::msg2-1::GFP and pAXR2::slr-1::GFP hypocotyls exhibited complete loss of gravitropism as did axr2-1. These results showed functional differences among the msg2-1, axr2-1, and slr-1 proteins, though some phenotypes were determined by the promoter activity.  相似文献   

9.
H Fukaki  H Fujisawa    M Tasaka 《Plant physiology》1996,110(3):945-955
In higher plants shoots show a negative gravitropic response but little is known about its mechanism. To elucidate this phenomenon, we have isolated a number of mutants with abnormal shoot gravitropic responses in Arabidopsis thaliana. Here we describe mainly three mutants: sgr1-1, sgr2-1, and sgr3-1 (shoot gravitropism). Genetic analysis confirmed that these mutations were recessive and occurred at three independent loci, named SGR1, SGR2, and SGR3, respectively. In wild type, both inflorescence stems and hypocotyls show negative gravitropic responses. The sgr1-1 mutants showed no response to gravity either by inflorescence stems or by hypocotyls. The sgr2-1 mutants also showed no gravitropic response in inflorescence stems but showed a reduced gravitropic response in hypocotyls. In contrast, the sgr3-1 mutant was found to have reduced gravitropic responses in inflorescence stems but normal gravitropic responses in hypocotyls. These results suggest that some genetic components of the regulatory mechanisms for gravitropic responses are common between inflorescence stems and hypocotyls, but others are not. In addition, these sgr mutants were normal with respect to root gravitropism, and their inflorescence stems and hypocotyls could carry out phototropism. We conclude that SGR1, SGR2, and SGR3 are novel genetic loci specifically involved in the regulatory mechanisms of shoot gravitropism in A. thaliana.  相似文献   

10.
The roles of phytochromes in elongation and gravitropism of roots   总被引:1,自引:0,他引:1  
Gravitropic orientation and the elongation of etiolated hypocotyls are both regulated by red light through the phytochrome family of photoreceptors. The importance of phytochromes A and B (phyA and phyB) in these red light responses has been established through studies using phy mutants. To identify the roles that phytochromes play in gravitropism and elongation of roots, we studied the effects of red light on root elongation and then compared the gravitropic curvature from roots of phytochrome mutants of Arabidopsis (phyA, phyB, phyD and phyAB) with wild type. We found that red light inhibits root elongation approximately 35% in etiolated seedlings and that this response is controlled by phytochromes. Roots from dark- and light-grown double mutants (phyAB) and light-grown phyB seedlings have reduced elongation rates compared with wild type. In addition, roots from these seedlings (dark/light-grown phyAB and light-grown phyB) have reduced rates of gravitropic curvature compared with wild type. These results demonstrate roles for phytochromes in regulating both the elongation and gravitropic curvature of roots.  相似文献   

11.
We have addressed two issues regarding the spatial distribution of three phytochromes in 3-d-old oat (Avena sativa L.) seedlings. Three monoclonal antibodies, GO-4, GO-7 and Oat-22, were used as probes. Each antibody detects only one of the phytochromes. The first issue is whether any of the phytochromes might be membrane-bound. To address this issue the abundance of each phytochrome in extracts prepared with either a detergent-free or a detergent-containing buffer was compared by immunoblot assay. The detergent-free buffer was formulated to extract only soluble protein, while the detergent-containing buffer was intended to extract both soluble and membrane proteins. None of the data indicate that any of these three phytochromes is membrane-bound in either a dark- or a light-grown seedling. The second issue is whether these three phytochromes are distributed differentially in 3-d-old dark- and light-grown seedlings. When seedlings were dissected into shoots, scutellums, and roots, all three phytochromes were detected in all three fractions from both dark- and light-grown seedlings. Each of the three phytochromes was most abundant in the shoot and least abundant in the root, except that in light-grown seedlings type I, etiolated-tissue phytochrome was more abundant in the root than in either the shoot or the scutellum. When the equivalent fractions dissected from different seedlings were compared, those dissected from dark-grown seedlings contained a higher quantity of each of the three phytochromes than did those dissected from light-grown seedlings, except that green-tissue, type II phytochromes did not differ significantly in the roots. At this level of resolution, no evidence was obtained to indicate a substantive difference among the three phytochromes in their spatial distribution. We thank Drs. Elizabeth Williams and Tammy Sage (Botany Department, University of Georgia, USA) for generously permitting us to use their image-analysis system. This research was supported by USDA NRICGP grant 91-37100-6490.  相似文献   

12.
Summary We have screened a large population of M2 seeds ofArabidopsis thaliana for plants which are resistant to exogenously applied indole-acetic acid (IAA). One of the resistant lines identified in this screen carries a dominant mutation which we have namedaxr2. Linkage analysis indicates that theaxr2 gene lies on chromosome 3. Plants carrying theaxr2 mutation are severe dwarfs and display defects in growth orientation of both the shoot and root suggesting that the mutation affects some aspect of gravitropic growth. In addition, the roots ofaxr2 plants lack root hairs. Growth inhibition experiments indicate that the roots ofaxr2 plants are resistant to ethylene and abscisic acid as well as auxin.  相似文献   

13.
Dark-grown hypocotyls of a starch-deficient mutant (NS458) of tobacco (Nicotiana sylvestris) lack amyloplasts and plastid sedimentation, and have severely reduced gravitropism. However, gravitropism improved dramatically when NS458 seedlings were grown in the light. To determine the extent of this improvement and whether mutant hypocotyls contain sedimented amyloplasts, gravitropic sensitivity (induction time and intermittent stimulation) and plastid size and position in the endodermis were measured in seedlings grown for 8 d in the light. Light-grown NS458 hypocotyls were gravitropic but were less sensitive than the wild type (WT). Starch occupied 10% of the volume of NS458 plastids grown in both the light and the dark, whereas WT plastids were essentially filled with starch in both treatments. Light increased plastid size twice as much in the mutant as in the WT. Plastids in light-grown NS458 were sedimented, presumably because of their larger size and greater total starch content. The induction by light of plastid sedimentation in NS458 provides new evidence for the role of plastid mass and sedimentation in stem gravitropic sensing. Because the mutant is not as sensitive as the WT, NS458 plastids may not have sufficient mass to provide full gravitropic sensitivity.  相似文献   

14.
AXR2 encodes a member of the Aux/IAA protein family   总被引:27,自引:0,他引:27  
The dominant gain-of-function axr2-1 mutation of Arabidopsis causes agravitropic root and shoot growth, a short hypocotyl and stem, and auxin-resistant root growth. We have cloned the AXR2 gene using a map-based approach, and find that it is the same as IAA7, a member of the IAA (indole-3-acetic acid) family of auxin-inducible genes. The axr2-1 mutation changes a single amino acid in conserved domain II of AXR2/IAA7. We isolated loss-of-function mutations in AXR2/IAA7 as intragenic suppressors of axr2-1 or in a screen for insertion mutations in IAA genes. A null mutant has a slightly longer hypocotyl than wild-type plants, indicating that AXR2/IAA7 controls development in light-grown seedlings, perhaps in concert with other gene products. Dark-grown axr2-1 mutant plants have short hypocotyls and make leaves, suggesting that activation of AXR2/IAA7 is sufficient to induce morphological responses normally elicited by light. Previously described semidominant mutations in two other Arabidopsis IAA genes cause some of the same phenotypes as axr2-1, but also cause distinct phenotypes. These results illustrate functional differences among members of the Arabidopsis IAA gene family.  相似文献   

15.
Gravitropism was examined in dark- and light-grown hypocotylsof wild-type (WT), two reduced starch mutants (ACG 20 and ACG27), and a starchless mutant (ACG 21) of Arabidopsis. In addition,the starch content of these four strains was studied with lightand electron microscopy. Based on time course of curvature andorientation studies, the graviresponse in hypocotyls is proportionalto the amount of starch in a genotype. Furthermore, starch mutationsseem to primarily affect gravitropism rather than differentialgrowth since both phototropic curvature and growth rates amongthe four genotypes are approximately equal. Our results suggestthat gravity perception may require a greater plastid mass inhypocotyls compared to roots. The kinetics of gravitropic curvaturealso was compared following reorientation at 45°, 90°,and 135°. As has been reported for other plant species,the optimal angle of reorientation is 135° for WT Arabidopsisand the two reduced starch mutants, but the magnitude of curvatureof the starchless mutant appears to be independent of the initialangle of displacement. Taken together, the results of the presentstudy and our previous experiments with roots of the same fourgenotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] supporta plastid-based hypothesis for gravity perception in plants. (Received December 16, 1996; Accepted February 7, 1997)  相似文献   

16.
A lettuce (Lactuca sativa L.) mutant that exhibits a procumbent growth habit was identified and characterized. In two wild type (WT) genetic backgrounds, segregation patterns revealed that the mutant phenotype was controlled by a recessive allele at a single locus, which was designated weary. Hypocotyls and inflorescence stems of plants homozygous for the weary allele exhibited reduced gravitropic responses compared with WT plants, but roots exhibited normal gravitropism. Microscopic analysis revealed differences in the radial distribution of amyloplasts in hypocotyl and inflorescence stem cells of weary and WT plants. Amyloplasts occurred in a single layer of endodermal cells in WT hypocotyls and inflorescence stems. By contrast, amyloplasts were observed in several layers of cortical cells in weary hypocotyls, and weary inflorescence stem cells lacked amyloplasts entirely. These results are consistent with the proposed role of sedimenting amyloplasts in shoot gravitropism of higher plants. The phenotype associated with the weary mutant is similar to that described for the Arabidopsis mutant sgr1/scr, which is defective in radial patterning and gravitropism.  相似文献   

17.
The sites of gravity perception are columella cells in roots and endodermal cells in hypocotyls and inflorescence stems. Since plastids are likely to play a role in graviperception, we investigated gravitropism in plastid mutants of Arabidopsis . Previous studies have shown that the arc 6 and arc 12 ( a ccumulation and r eplication of c hloroplasts) mutants have an average of two large plastids per leaf mesophyll cell. In this study, we found that these arc mutants have altered plastid morphology throughout the entire plant body, including the cells involved in gravity perception. There were no major differences in total starch content per cell in endodermal and columella cells of the wild-type (WT) compared to arc 6 and arc 12 as assayed by iodine staining. Thus, the total mass of plastids per cell in arc 6 and arc 12 is similar to their respective WT strains. Results from time course of curvature studies demonstrated that the plastid mutation affected gravitropism only of inflorescence stems and hypocotyls, but not roots. Thus, roots appear to have different mechanisms of gravitropism compared to stems and hypocotyls. Time course of curvature studies with light-grown seedlings were performed in the presence of latrunculin B (Lat-B), an actin-depolymerizing drug. Lat-B promoted gravitropic curvature in hypocotyls of both the WT and arc 6 but had little or no effect on gravitropism in roots of both strains. These results suggest that F-actin is not required for hypocotyl gravitropism.  相似文献   

18.
Hypothetical genes should play important roles in plant growth and development, although their biological functions await elucidation. One of these genes, namely At2g37610, caught our attention during the gene cloning of several salt-tolerant mutants. Promoter-GUS fusion analysis indicated a unique tissue-specific expression pattern of At2g37610 in Arabidopsis. Constitutive expression of the gene under 35S promoter caused obvious morphological changes in transgenic Arabidopsis plants, such as curled rosette leaves and bushy phenotype at maturity. Phenotypic characterization revealed that the cause of the bushy phenotype was the enhanced lateral bud outgrowth at the bottom region of the primary inflorescence, which is different from that of reported mutant plants (bushy or branched) such as max, axr1, and bus mutants. Together, these data suggest that At2g37610 is a possible novel gene related to the regulation of leaf development and shoot patterning.  相似文献   

19.
Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls.  相似文献   

20.
We have found that chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea (Pisum sativum L. cv Alaska), specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Application of 60 microM CSI disrupts the vertically oriented elongation of wild-type roots grown on agar plates but orients the elongation of agravitropic mutant aux1-7 roots toward the gravity. The CSI-induced restoration of gravitropic response in aux1-7 roots was not observed in other agravitropic mutants, axr2 and eir1-1. Because the aux1-7 mutant is reduced in sensitivity to auxin and ethylene, we examined the effects of CSI on another auxin-resistant mutant, axr1-3, and ethylene-insensitive mutant ein2-1. In aux1-7 roots, CSI stimulated the uptake of [(3)H]indole-3-acetic acid (IAA) and induced gravitropic bending. In contrast, in wild-type, axr1-3, and ein2-1 roots, CSI slowed down the rates of gravitropic bending and inhibited IAA uptake. In the null allele of aux1, aux1-22, the agravitropic nature of the roots and IAA uptake were not affected by CSI. This close correlation between auxin uptake and gravitropic bending suggests that CSI may regulate gravitropic response by inhibiting or stimulating the uptake of endogenous auxin in root cells. CSI exhibits selective influence toward IAA versus 1-naphthaleneacetic acid as to auxin-induced inhibition in root growth and auxin uptake. The selective action of CSI toward IAA along with the complete insensitivity of the null mutant aux1-22 toward CSI strongly suggest that CSI specifically interacts with AUX1 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号