首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Wang C  Yang H  Chen M  Wang Y  Li F  Luo C  Zhao S  He D 《Biotechnology letters》2012,34(9):1745-1748
When Monascus MX was grown under blue light instead of in the dark, citrinin production increased from 478?mg?l(-1) to 698?mg?l(-1). To explain this, the expression of the pksCT gene, which encodes citrinin polyketide synthase, and of 5 ORFs around it, were monitored. Blue light enhanced citrinin production by upregulating the expression of orf1, orf3, and orf4, indicating that pksCT was not the key gene responsible for the quantity of citrinin production in blue light.  相似文献   

3.
A standard type II polyketide synthase (PKS) gene cluster was isolated while attempting to clone the biosynthetic gene for lipstatin from Streptomyces toxytricini NRRL 15,443. This result was observed using a Southern blot of a PstI-digested S. toxytricini chromosomal DNA library with a 444 bp amplified probe of a ketosynthase (KS) gene fragment. Four open reading frames [thioesterase (TE), beta-ketoacyl systhase (KAS), chain length factor (CLF), and acyl carrier protein (ACP)], were identified through the nucleotide sequence determination and analysis of a 4.5 kb cloned DNA fragment. In order to confirm the involvement of a cloned gene in lipstatin biosynthesis, a gene disruption experiment for the KS gene was performed. However, the resulting gene disruptant did not show any significant difference in lipstatin production when compared to wild-type S. toxytricini. This result suggests that lipstatin may not be synthesized by a type II PKS.  相似文献   

4.
Usnea longissima has long been used as a traditional medicine in China, India, Turkey, Canada and Europe. This lichen can produce several bioactive compounds that primarily belong to the polyketide family. The enzymes responsible for the production of these compounds are the polyketide synthases, but the biosynthetic processes in lichens are still unclear. In this study, a cultured mycobiont of Usnea longissima was used to isolate and characterize a polyketide synthase gene (UlPKS1). Complete sequence information regarding UlPKS1 (6,468 bp) was obtained by screening a Fosmid genomic library using a 512-bp fragment corresponding to part of the ketosynthase (KS) domain. Sequence analysis of UlPKS1 suggested that it contained features of a non-reducing fungal type I PKS with a starter unit of ACP transacylase (SAT), ketosynthase (KS), product template (PT), acyl carrier protein (ACP) transacylase, acyltransferase (AT) and thioesterase (TE) domain, and had five intervening introns. The domain organization of UlPKS1 (SAT-KS-AT-PT-ACP-ACP-TE) was quite similar to that of aromatic PKSs, and phylogenetic analysis showed that UlPKS1 belonged to the clade of lichenized fungal non-reducing PKS. RT-PCR analyses revealed that the expression of UlPKS1 was down-regulated by glycine and high concentrations of sorbitol, inositol and fructose and up-regulated by sucrose and glucose. Here, we introduce a non-reducing PKS gene in the lichen-forming fungus U. longissima, with a domain structure similar to the structure of orsellinic acid synthase A (OrsA) which is required for orsellinic acid biosynthesis in Aspergillus nidulans.  相似文献   

5.
红曲菌能产生多种有益的次级代谢产物,但红曲菌也产生一种对人和哺乳动物肝和肾有毒害的毒素,即桔霉素。因此控制毒素的产生是保障红曲产品安全性所必须的。故对桔霉素的合成途径及相关的基因做深入了解。6个桔霉素合成相关的基因成簇位于21 kb的DNA片段上。克隆了一个新基因(orf7基因),其位于该基因簇的外侧。采用基因敲除技术,构建红曲菌orf7基因缺失菌株。并采用紫外分光光度法检测orf7基因缺失菌株的红曲色素产量,HPLC法检测其桔霉素产量。orf7缺失菌株产红曲色素能力与出发菌株As3.4384相比没有变化;产桔霉素培养13~19 d,桔霉素的产量与出发菌株As3.4384相比增加了 142.4%。从而证实orf7基因与桔霉素代谢相关。  相似文献   

6.
O'Connor SE  Chen H  Walsh CT 《Biochemistry》2002,41(17):5685-5694
The biosynthesis of epothilones, a family of hybrid polyketide (PK)/nonribosomal peptide (NRP) antitumor agents, provides an ideal system to study a hybrid PK/NRP natural product with significant biomedical value. Here the third enzyme involved in epothilone production, the five domain 195 kDa polyketide synthase (PKS) EpoC protein, has been expressed and purified from Escherichia coli. EpoC was combined with the first two enzymes of the epothilone biosynthesis pathway, the acyl carrier protein (ACP) domain of EpoA and EpoB, to reconstitute the early steps in epothilone biosynthesis. The acyltransferase (AT) domain of EpoC transfers the methylmalonyl moiety from methylmalonyl-CoA to the holo HS-acyl carrier protein (ACP) in an autoacylation reaction. The ketosynthase (KS) domain of EpoC decarboxylates the methylmalonyl-S-EpoC acyl enzyme to generate the carbon nucleophile that reacts with methylthiazolylcarboxyl-S-EpoB. The resulting condensation product can be reduced in the presence of NADPH by the ketoreductase (KR) domain of EpoC and then dehydrated by the dehydratase (DH) domain to produce the methylthiazolylmethylacrylyl-S-EpoC acyl enzyme intermediate that serves as the acyl donor for subsequent elongation of the epothilone chain. The acetyl-CoA donor can be replaced with propionyl-CoA, isobutyryl-CoA, and benzoyl-CoA and the acyl chains accepted by both EpoB and EpoC subunits to produce ethyl-, isopropyl-, and phenylthiazolylmethylacrylyl-S-EpoC acyl enzyme intermediates, suggesting that future combinatorial biosynthetic variations in epothilone assembly may be feasible. These results demonstrate in vitro reconstitution of both the PKS/NRPS interface (EpoA-ACP/B) and the NRPS/PKS interface (EpoB/C) in the assembly line for this antitumor natural product.  相似文献   

7.
不产桔霉素的红曲霉菌种深层发酵生产莫纳可林K   总被引:6,自引:0,他引:6  
对三株在YES培养基中不产桔霉素的红曲霉菌种,在摇瓶中研究了它们液体发酵生产莫纳可林K的情况。在大米粉培养基中,红色红曲霉不产莫纳可林K,但是紫色红曲霉和烟灰色红曲霉均能产莫纳可林K,前者产量高于后者。在葡萄糖.甘油培养基中,后两者的产量均很低,但是如果在该培养基中添加酵母膏,紫色红曲霉能产生较为可观的莫纳可林K。在2L的发酵罐中,利用添加了酵母膏的葡萄糖-甘油培养基,紫色红曲霉在第13d的莫纳可林K产量可达104mg/L,培养过程中无桔霉素产生。  相似文献   

8.
We cloned a new polyketide gene cluster, aur2, in Streptomyces aureofaciens CCM3239. Sequence analysis of the 9531-bp DNA fragment revealed 10 open reading frames, majority of which showed high similarity to the previously characterized type II polyketide synthase (PKS) genes. An unusual feature of the aur2 cluster is a disconnected organization of minimal PKS genes; ACP is located apart from the genes for ketosynthases KSalpha and KSbeta. The aur2 gene cluster was disrupted in S. aureofaciens CCM3239 by a homologous recombination, replacing the four genes (aur2A, E, F, G) including ketosynthase KSalpha, with antibiotic resistance marker gene. The disruption did not affect growth and differentiation, and disrupted strain produced spores with wild-type grey-pink pigmentation. The biochromatographic analysis of the culture extracts from S. aureofaciens wild type and aur2-disrupted strains did not reveal any difference in the pattern of antibacterial compounds.  相似文献   

9.
聚酮化合物(polyketides)是一类庞大的次级代谢家族,聚酮合酶(polyketide synthase,PKS)是介导聚酮化合物生物合成的关键酶。通过巢氏简并PCR与染色体步行的方法,获得了草菇中的编码PKS的基因vv-alb的全长序列,并通过荧光实时定量RT-PCR方法对vv-alb基因在草菇不同生长阶段与不同部位的表达情况进行了初步分析,为进一步研究PKS在草菇和其他食用真菌生物代谢过程中的作用奠定了一定的基础。  相似文献   

10.
Deductions from the molecular analysis of the 65,000-bp stigmatellin biosynthetic gene cluster are reported. The biosynthetic genes (stiA-J) encode an unusual bacterial modular type I polyketide synthase (PKS) responsible for the formation of this aromatic electron transport inhibitor produced by the myxobacterium Stigmatella aurantiaca. Involvement of the PKS gene cluster in stigmatellin biosynthesis is shown using site-directed mutagenesis. One module of the PKS is assumed to be used iteratively during the biosynthetic process, which seems to involve an unusual transacylation of the biosynthetic intermediate from an acyl carrier protein domain back to the preceding ketosynthase domain. Finally, the polyketide chain which is presumably catalyzed by a novel C-terminal domain in StiJ that does not resemble thioesterases, is cyclized and aromatized. The presented results of feeding experiments are in good agreement with the proposed biosynthetic scheme. In contrast to all other PKS type I systems reported to date, each module of StiA-J is encoded on a separate gene. The gene cluster contains a "stand alone" O-methyltransferase and two unusual O-methyltransferase domains embedded in the PKS. In addition, inactivation of a cytochrome P450 monooxygenase-encoding gene involved in post-PKS hydroxylation of the aromatic ring leads to the formation of two novel stigmatellin derivatives.  相似文献   

11.
Monacolin K (MK), which is widely used as an antihypercholesterolemia medicine, is produced as a fungal secondary metabolite through the polyketide pathway. The MK biosynthetic gene cluster proposed for Monascus pilosus BCRC38072 was also identified in M. pilosus NBRC4480. The mokB gene, located at the end of the putative gene cluster and possibly encoding polyketide synthase, was disrupted. The mokB disruptant did not produce MK, but accumulated an intermediate that was confirmed to be monacolin J, indicating that mokB encodes the polyketide synthase responsible for the biosynthesis of side-chain diketide moiety.  相似文献   

12.
13.
14.
Polyketides are important secondary metabolites, many of which exhibit potent pharmacological applications. Biosynthesis of polyketides is carried out by a single polyketide synthase (PKS) or multiple PKSs in successive elongations of enzyme-bound intermediates related to fatty acid biosynthesis. The polyketide gene PKS306 from Pseudallescheria boydii NTOU2362 containing domains of ketosynthase (KS), acyltransferase (AT), dehydratase (DH), acyl carrier protein (ACP) and methyltransferase (MT) was cloned in an attempt to produce novel chemical compounds, and this PKS harbouring green fluorescent protein (GFP) was expressed in Saccharomyces cerevisiae. Although fluorescence of GFP and fusion protein analysed by anti-GFP antibody were observed, no novel compound was detected. 6-methylsalicylic acid synthase (6MSAS) was then used as a template and engineered with PKS306 by combinatorial fusion. The chimeric PKS containing domains of KS, AT, DH and ketoreductase (KR) from 6MSAS with ACP and MT from PKS306 demonstrated biosynthesis of a novel compound. The compound was identified with a deduced chemical formula of C7H10O3, and the chemical structure was named as 2-hydroxy-2-(propan-2-yl) cyclobutane-1,3-dione. The novel compound synthesized by the chimeric PKS in this study demonstrates the feasibility of combinatorial fusion of PKS genes to produce novel polyketides.  相似文献   

15.
Type II polyketide synthases (PKSs) are bacterial multienzyme systems that catalyze the biosynthesis of a broad range of natural products. A core set of subunits, consisting of a ketosynthase, a chain length factor, an acyl carrier protein (ACP) and possibly a malonyl CoA:ACP transacylase (MAT) forms a "minimal" PKS. They generate a poly-beta-ketone backbone of a specified length from malonyl-CoA derived building blocks. Here we (a) report on the kinetic properties of the actinorhodin minimal PKS, and (b) present further data in support of the requirement of the MAT. Kinetic analysis showed that the apoACP is a competitive inhibitor of minimal PKS activity, demonstrating the importance of protein-protein interactions between the polypeptide moiety of the ACP and the remainder of the minimal PKS. In further support of the requirement of MAT for PKS activity, two new findings are presented. First, we observe hyperbolic dependence of PKS activity on MAT concentration, saturating at very low amounts (half-maximal rate at 19.7 +/- 5.1 nM). Since MAT can support PKS activity at less than 1/100 the typical concentration of the ACP and ketosynthase/chain length factor components, it is difficult to rule out the presence of trace quantities of MAT in a PKS reaction mixture. Second, an S97A mutant was constructed at the nucleophilic active site of the MAT. Not only can this mutant protein support PKS activity, it is also covalently labeled by [(14)C]malonyl-CoA, demonstrating that the serine nucleophile (which has been the target of PMSF inhibition in earlier studies) is dispensible for MAT activity in a Type II PKS system.  相似文献   

16.
17.
18.
Modular polyketide synthases (PKSs) of bacteria provide an enormous reservoir of natural chemical diversity. Studying natural biocombinatorics may aid in the development of concepts for experimental design of genes for the biosynthesis of new bioactive compounds. Here we address the question of how the modularity of biosynthetic enzymes and the prevalence of multiple gene clusters in Streptomyces drive the evolution of metabolic diversity. The phylogeny of ketosynthase (KS) domains of Streptomyces PKSs revealed that the majority of modules involved in the biosynthesis of a single compound evolved by duplication of a single ancestor module. Using Streptomyces avermitilis as a model organism, we have reconstructed the evolutionary relationships of different domain types. This analysis suggests that 65% of the modules were altered by recombinational replacements that occurred within and between biosynthetic gene clusters. The natural reprogramming of the biosynthetic pathways was unambiguously confined to domains that account for the structural diversity of the polyketide products and never observed for the KS domains. We provide examples for natural acyltransferase (AT), ketoreductase (KR), and dehydratase (DH)–KR domain replacements. Potential sites of homologous recombination could be identified in interdomain regions and within domains. Our results indicate that homologous recombination facilitated by the modularity of PKS architecture is the most important mechanism underlying polyketide diversity in bacteria.  相似文献   

19.
红曲色素是天然安全的色素和防腐剂,根据代谢数据库选择了6种代谢途径关键酶的抑制剂,在基本培养基中考察这些抑制剂对红曲霉生长和合成色素的影响。甲羟戊酸合成途径的抑制剂邻氨基苯甲酸和3,4-二羟苯甲酸对红曲霉生长和色素生物合成都没有影响;莽草酸途径关键酶氨基苯甲酸合成酶的抑制剂三甲胺不抑制红曲霉的生长和色素的合成。在不影响红曲霉生长的浓度范围内,聚酮途径中β-酮酯酰-ACP合成酶的专性抑制剂碘乙酰胺(0.5mmol/L)抑制红曲色素合成程度达64.7%,非专性抑制剂咪唑(1mmol/L)抑制幅度达60%,聚酮途径硫酯酶的抑制剂2,4-二硝基氟苯(0.5mmol/L)强烈抑制红曲霉合成色素的活性,抑制程度达91.5%。相关酶活抑制的试验数据显示红曲霉可能经过聚酮途径合成红曲色素。  相似文献   

20.
Tang Y  Koppisch AT  Khosla C 《Biochemistry》2004,43(29):9546-9555
Type II polyketide synthases (PKSs) synthesize polyfunctional aromatic polyketides through iterative condensations of malonyl extender units. The biosynthesis of most aromatic polyketides is initiated through an acetate unit derived from decarboxylation of malonyl-acyl carrier protein (ACP). Modification of this primer unit represents a powerful method of generating novel polyketides. We have demonstrated that recombination of the initiation module from the R1128 PKS with heterologous elongation modules afforded regioselectively modified polyketides containing alternative primer units. With the exception of the role of the acyltransferase homologue ZhuC, the catalytic cycle of the initiation module has been well explored. ZhuC, along with the ketosynthase III homologue ZhuH and the ACP(p) ZhuG, is essential for the in vivo biosynthesis of aromatic polyketides derived from non-acetate primer units. Here we have studied the role of ZhuC using PKS proteins reconstituted in vitro. We show that the tetracenomycin (tcm) minimal PKS can be directly primed with non-acetate acyl groups. In the presence of approximately 10 microM hexanoyl-ZhuG or approximately 100 microM hexanoyl-CoA, the tcm minimal PKS synthesized hexanoyl-primed analogues of octaketides SEK4 and SEK4b, as well as acetate-primed decaketides SEK15 and SEK15b at comparable levels. Addition of ZhuC abolished synthesis of the acetate-primed decaketides, resulting in exclusive synthesis of the hexanoyl-primed octaketides. In the absence of alternative acyl donors, ZhuC severely retarded the activity of the tcm minimal PKS. The editing capabilities of ZhuC were directly revealed by demonstrating that ZhuC has 100 times greater specificity for acetyl- and propionyl-ACP as compared to hexanoyl- and octanoyl-ACP. Thus, by purging the acetate primer units that otherwise dominate polyketide chain initiation, ZhuC (and presumably its homologues in other PKSs such as the doxorubicin and frenolicin PKSs) allows alternative primer units to be utilized by the elongation module in vivo. The abilities of other alkylacyl primer units to prime the tcm minimal PKS were also investigated in this report.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号