首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release of divalent cations (Ca2+ and Sr2+) from rat liver mitochondria after membrane depolarization with protonophore (carbonyl cyanide m-chlorophenyl hydrazone, CCCP), sodium azide and K(+)-ionophore (valinomycin) was studied. It is stated that membrane depolarization itself is not sufficient for cations release from mitochondrial matrix (provided that mitochondrial permeability transition pore is blocked by cyclosporin A). Complete delivering of divalent cations is observed only after protonophore (CCCP) addition to suspension of deenergized mitochondria. The data show that membrane permeabilisation to hydrogen ions (H+) is necessary for complete cation release from the mitochondrial matrix. The enhancement in K(+)-conductivity of mitochondrial membrane (by valinomycin), on the contrary, is not able to provide complete delivering of cations from mitochondria. It is shown that quantity of divalent metal cation released from mitochondria (depolarized and permeabilized for K+ as well) is proportional to the concentration of protonophore (but not K(+)-ionophore) introduced in the incubation medium. The data obtained lead to the conclusion that H(+)-permeabilization of the mitochondrial membrane is necessary for the complete release of Ca2+ and Sr2+ from mitochondria after membrane depolarization. The possible mechanism of divalent metal cations release from deenergized mitochondria is discussed.  相似文献   

2.
Based on the effects of ionomycin upon mitochondrial respiration, ionomycin was shown to be an effective ionophore for Ca2+ in rat liver mitochondria. The ionomycin-induced efflux of Ca2+ across the inner membrane was more sensitive to loading the mitochondria with Ca2+ than was efflux catalyzed by A23187. At saturating concentrations of Ca2+, the turnover number for ionomycin was 3- to 5-fold greater than that of A23187. Ionomycin catalyzed the efflux of mitochondrial Mg2+ at rates comparable to those observed with A23187. Ionomycin also mediated an efflux of K+ provided that the mitochondria were depleted of their endogenous divalent metal ions. The apparent turnover numbers for K+ efflux suggest that ionomycin is more specific for divalent metal ions than A23187.  相似文献   

3.
The frequency of contacts between the mitochondrial envelope membranes was determined in freeze-fractured samples of isolated mitochondria by means of quantifying the frequency of fracture plane deflections between the two membranes. It was observed that the formation of contacts correlated with the concentration of free ADP despite of inhibition of electron transport by antimycin A. The activity of ATPase partially inhibited by oligomycin or depletion of membrane potential by K+ and valinomycin had no effect on the induction of the contacts by ADP. ATP was ineffective in creating contacts irrespective of the presence or absence of a membrane potential, whereas carboxyatractyloside induced the contacts under all conditions in a manner similar to ADP. These results suggest the involvement of the ATP/ADP translocator in regulation of contact sites. As a consequence, we analyzed its distribution in the inner membrane of kidney and liver mitochondria by binding of [3H]atractyloside to subfractions of this membrane. The experiments demonstrated that the translocator was located in the peripheral part of the inner membrane as well as in the portion which formed the cristae.  相似文献   

4.
A number of spin-labeled acyl derivatives of atractyloside, (m,n)acyl-ATR (general formula: CH3- (CH2)mCX(CH2)nCOO-ATR, where X is an o-azolidine ring containing a nitroxide), have been synthesized. As shown by electron spin resonance (ESR) spectra of spin-labeled acyl-ATR, the nitroxide placed on the acyl chain interacts with the diterpene residue of the atractyloside moiety when incorporated in liposomes. Spin-labeled acyl-ATRs were used to probe the ADP carrier in heart mitochondria. They inhibit ADP transport with the same efficiency as unlabeled acyl-ATRs. The inhibition is a mixed competitive and noncompetitive inhibition. The inhibitor constant is close to 10(-7) M. The long chain acyl-ATRs (10,3)- (7,6)-, (7,8)-, and (5,10)acyl-ATRs) and also the short chain (0,2)acyl-ATR, when added at low concentrations to heart mitochondria, give rise to more immobilized ESR spectra than when added to liposomes. Immobilization is stronger for the first three molecules of the series. The (1,14)acyl-ATR, which possesses a nitroxide almost at the end of the acyl chain near the terminal methyl, gives rise to a spectrum corresponding to a high degree of fluidity. Upon addition of atractyloside or of other specific ligands, spin-labeled long-chain acyl-ATRs bound to the ADP carrier are displaced from their binding site toward the lipid phase of the mitochondrial membrane and the short chain (0,2)acyl-ATR is released into the aqueous phase. Spin-labeled long-chain acyl-ATRs do not show any evidence of binding to a protein when incubated with "inside out" submitochondrial particles, in spite of the fact that these particles are able to transport ADP. These results are discussed with respect to the size and the asymmetry of the ADP carrier in the mitochondrial membrane and the mechanism of ADP transport.  相似文献   

5.
Protonmotive force and motility of Bacillus subtilis.   总被引:4,自引:4,他引:0       下载免费PDF全文
J I Shioi  Y Imae    F Oosawa 《Journal of bacteriology》1978,133(3):1083-1088
Motility of Bacillus subtilis was inhibited within a few minutes by a combination of valinomycin and a high concentration of potassium ions in the medium at neutral pH. Motility was restored by lowering the concentration of valinomycin or potassium ions. The valinomycin concentration necessary for motility inhibition was determined at various concentrations of potassium ions and various pH's. At pH 7.5, valinomycin of any concentration did not inhibit the motility, when the potassium ion concentration was lower than 9 mM. In the presence of 230 mM potassium ion, the motility inhibition by valinomycin was not detected at pH lower than 6.1. These results are easily explained by the idea that the motility of B. subtilis is supported by the electrochemical potential difference of the proton across the membrane, or the protonmotive force. The electrochemical potential difference necessary for motility was estimated to be about -90 mV.  相似文献   

6.
Electrophoretic uniport of anions through the inner mitochondrial membrane can be activated by alkaline pH or by depleting the matrix of divalent cations. It has also been suggested that, in the presence of valinomycin and potassium, respiration can also activate anion uniport. We have proposed that a single pathway is responsible for all three of these transport processes (Garlid, K. D., and Beavis, A. D. (1986) Biochim. Biophys. Acta 853, 187-204). We now present evidence that like the "pH-dependent" pore the divalent cation-regulated pore and the "respiration-induced" pore are blocked by N,N'-dicyclohexylcarbodiimide (DCCD). Moreover, the kinetics of inhibition of the latter two pathways are identical and exhibit a second order rate constant of 2.6 X 10(-3) (nmol DCCD/mg)-1.min-1. DCCD inhibits the uniport of Cl-, phosphate, malate, and other lipophobic anions completely, but it has no effect on the classical electroneutral phosphate and dicarboxylate carriers. In Mg2+-depleted mitochondria DCCD partially inhibits the transport of SCN-; however, in Mg2+-containing mitochondria and at low pH, no inhibition is observed. Furthermore, in DCCD-treated mitochondria, even following depletion of Mg2+, the transport of SCN- is independent of pH. These results lead us to conclude that two pathways for anion uniport exist: a specific, regulated pathway which can conduct a wide variety of anions and a nonregulated pathway through the lipid bilayer which only conducts lipid-soluble ions.  相似文献   

7.
The influence of nucleotides on 2,4-dinitrophenol (DNP)-induced K+ efflux from intact rat liver mitochondria has been studied. ATP and ADP at micromolar concentrations were found to inhibit mitochondrial potassium transport, whereas GTP, GDP, CTP, and UTP did not show tha same effect. The values of half-maximal inhibition (IC50) were approximately 20 microM for ATP and approximately 60 microM for ADP. It is suggested that adenine nucleotides exert their inhibitory action at the matrix side of the inner mitochondrial membrane since the inhibitor of adenine nucleotide translocase atractyloside at concentration of 1 microM completely removed the inhibitory effect of ATP and ADP. The mitochondrial ATPase inhibitor oligomycin (2 microg/ml) was found to reduce slightly the rate of DNP-induced K+ efflux and had no effect on inhibition by adenine nucleotides; the latter was insensitive to Mg2+ and the changes in pH. It seems likely that the regulation of potassium transport is not due to phosphorylation of the channel-forming protein but to binding of the nucleotides in specific regulatory sites. The possibility of potassium efflux from mitochondria in the presence of uncoupler via the ATP-dependent potassium channel is discussed.  相似文献   

8.
Modulation of K+ conductance of the inner mitochondrial membrane has been proposed to mediate preconditioning in ischemia-reperfusion injury. The mechanism is not entirely understood, but it has been linked to a decreased activation of mitochondrial permeability transition (mPT). In the present study K+ channel activity was mimicked by picomolar concentrations of valinomycin. Isolated brain mitochondria were exposed to continuous infusions of calcium. Monitoring of extramitochondrial Ca2+ and mitochondrial respiration provided a quantitative assay for mPT sensitivity by determining calcium retention capacity (CRC). Valinomycin and cyclophilin D inhibition separately and additively increased CRC. Comparable degrees of respiratory uncoupling induced by increased K+ or H+ conductance had opposite effects on mPT sensitivity. Protonophores dose-dependently decreased CRC, demonstrating that so-called mild uncoupling was not beneficial per se. The putative mitoKATP channel opener diazoxide did not mimic the effect of valinomycin. An alkaline matrix pH was required for mitochondria to retain calcium, but increased K+ conductance did not result in augmented ΔpH. The beneficial effect of valinomycin on CRC was not mediated by H2O2-induced protein kinase Cϵ activation. Rather, increased K+ conductance reduced H2O2 generation during calcium infusion. Lowering the osmolarity of the buffer induced an increase in mitochondrial volume and improved CRC similar to valinomycin without inducing uncoupling or otherwise affecting respiration. We propose that increased potassium conductance in brain mitochondria may cause a direct physiological effect on matrix volume inducing resistance to pathological calcium challenges.  相似文献   

9.
Regulation of Metabolite Flux through Voltage-Gating of VDAC Channels   总被引:7,自引:0,他引:7  
The mitochondrial outer membrane channel, VDAC, is thought to serve as the major permeability pathway for metabolite flux between the cytoplasm and mitochondria. The permeability of VDAC to citrate, succinate, and phosphate was studied in channels reconstituted into planar phospholipid membranes. All ions showed large changes in permeability depending on whether the channel was in the open or in the low conductance, ``closed' state, with the closed state always more cation selective. This was especially true for the divalent and trivalent anions. Additionally, the anion flux when the voltage was zero was shown to decrease to 5–11% of the open state flux depending on the anion studied. These results give the first rigorous examination of the ability of metabolites to permeate through VDAC channels and indicate that these channels can control the flux of these ions through the outer membrane. This lends more evidence to the growing body of experiments that suggest that the outer mitochondrial membrane has a much more important role in controlling mitochondrial activity than has been thought historically. Received: 4 November 1996/Revised: 8 January 1997  相似文献   

10.
1. Mitochondrial Ca2+, accumulated by succinate oxidation was released by addition of 50 microM atractyloside. Beside this Ca2+ efflux, a large oxidation of pyridine nucleotides and sustained membrane depolarization occurs. An absolute requirement for acetate to support Ca2+ release is demonstrated. 2. Membrane de-energization, NAD(P)H oxidation, and Ca2+ efflux as induced by atractyloside were temperature-dependent, since it occurs when mitochondria are incubated at 22 degrees C and was abolished at 4 degrees C. 3. Taking into account this latter, the effects of atractyloside on mitochondrial Ca2+ release appears not to be a simple result of the binding of the inhibitor to adenine nucleotide translocase. 4. It is proposed that the mechanism involved in atractyloside-driven membrane permeability to Ca2+ must be related with the transference of the conformational change of the carrier, to another membrane structure responsible for the maintenance permeability to ions.  相似文献   

11.
Coenzyme A (CoA) transport was studied in isolated rat heart mitochondria. Uptake of CoA was assayed by determining [3H]CoA associated with mitochondria under various conditions. Various oxidizable substrates including alpha-ketoglutarate, succinate, or malate stimulated CoA uptake. The membrane proton (delta pH) and electrical (delta psi) gradients, which dissipated with time in the absence of substrate, were maintained at their initial levels throughout the incubation in the presence of substrate. Addition of phosphate caused a concentration-dependent decrease of both delta pH and CoA uptake. Nigericin also dissipated the proton gradient and prevented CoA uptake. Valinomycin also prevented CoA uptake into mitochondria. Although the proton gradient was unaffected, the electrical gradient was completely abolished in the presence of valinomycin. Addition of 5 mM phosphate 10 min after the start of incubation prevented further uptake of CoA into mitochondria. A rapid dissipation of the proton gradient upon addition of phosphate was observed. Addition of nigericin or valinomycin 10 min after the start of incubation also resulted in no further uptake of CoA into with mitochondria; valinomycin caused an apparent efflux of CoA from mitochondria. Uptake was found to be sensitive to external pH displaying a pH optimum at pHext 8.0. Although nigericin significantly inhibited CoA uptake over the pHext range of 6.75-8, maximal transport was observed around pHext 8.0-8.25. Valinomycin, on the other hand, abolished transport over the entire pH range. The results suggest that mitochondrial CoA transport is determined by the membrane electrical gradient. The apparent dependence of CoA uptake on an intact membrane pH gradient is probably the result of modulation of CoA transport by matrix pH.  相似文献   

12.
In the present study we examined factors affecting the reversal of the ischemia-induced protonic inhibition of the mitochondrial ATPase described earlier (Rouslin, W. (1983) J. Biol. Chem. 258, 9657-9661). It was found that ATPase reactivation and accompanying inhibitor protein release during the re-energization of intact mitochondria isolated from 20-min ischemic canine heart muscle could be blocked completely by either carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or nigericin but was unaffected by valinomycin at 35 mM K+. At higher K+ concentrations, valinomycin also blocked ATPase reactivation but not quite as completely as did nigericin. These observations suggest that ATPase reactivation and inhibitor protein release are particularly dependent upon either the trans-inner membrane pH gradient (delta pH) or possibly upon matrix pH per se and slightly less dependent upon membrane potential (delta psi) in intact cardiac muscle mitochondria. The addition of FCCP at the end of the re-energization incubations limited partially the extent of both ATPase reactivation and inhibitor protein release. This latter effect appears to have been mediated by a partial reassociation of the inhibitor protein with the enzyme, and it was accentuated (when FCCP was added at the end of the incubations) or mimicked (when FCCP was absent) by lowering the pH of the re-energization medium. A close examination of the first 10 min of the time course of enzyme activation and of inhibitor protein release revealed that while the former process was essentially finished in 1 min or less, the latter required approximately 10 min for completion. This observation led to the proposal of a two-site model of enzyme-inhibitor interaction which is discussed.  相似文献   

13.
A highly active phosphate transporter was extracted with octylglucoside from bovine heart submitochondrial particles that were first partially depleted of other membrane components. It was then partially purified by ammonium sulfate fractionation. After reconstitution of the transporter into liposomes prepared with a crude mixture of soybean phospholipids, the Pi/OH exchange, but not the Pi/Pi exchange, was stimulated three- to fourfold by valinomycin and nigericin in the presence of K+. Both Pi/OH and Pi/Pi exchange activities were sensitive to mercurials and other SH reagents. The rutamycin-sensitive ATPase complex from mitochondria was reconstituted together with the phosphate transporter and adenine nucleotide transporter into liposomes. After inhibition of externally located ATPase, the hydrolysis of ATP was sensitive to atractyloside and mersalyl.  相似文献   

14.
Subcellular fractionation of tissue in nonaqueous media was employed to study metabolite compartmentation in isolated perfused rat hearts. The mitochondrial and cytosolic concentrations of citrate and 2-oxoglutarate, total concentrations of the glycolytic intermediates and rate of glycolysis were measured in connection with changes in the rate of cellular respiration upon modulation of the ATP consumption by changes of the mechanical work load of the heart. The concentrations of citrate and 2-oxoglutarate in the mitochondria were 16- and 14-fold, respectively, greater than those in the cytosol of beating hearts. The cytosolic citrate concentration was low compared with concentrations which have been employed in demonstrations of the citrate inhibition of glycolysis. In spite of the low activities reported for the tricarboxylate carrier in heart mitochondria, the cytosolic citrate concentration reacted to perturbations of the mitochondrial citrate concentration, and inhibition of glycolysis at the phosphofructokinase step could be observed concomitantly with an increase in the cytosolic citrate concentration. The ΔpH across the inner mitochondrial membrane calculated from the 2-oxoglutarate concentration gradient and the mitochondrial membrane potential calculated from the adenylate distribution gave an electrochemical potential difference of protons compatible with chemiosmotic coupling in the intact myocardium.  相似文献   

15.
Manganese toxicity can evoke neuropsychiatric and neuromotor symptoms, which have frequently been attributed to profound oxidative stress in the dopaminergic system. However, the characterization of manganese as a pro-oxidant remains controversial because antioxidant properties also have been associated with this metal. The current study was designed to address these disparate findings concerning the oxidative properties of manganese. The apparent ability of manganese in its divalent form to promote formation of reactive oxygen species (ROS) within a cortical mitochondrial-synaptosomal (P2) fraction was completely abolished by the addition of one five hundredth of its molarity of desferroxamine (DFO), a trivalent metal chelator. This large ratio and the high specificity of DFO for trivalent metal ions discounted the possibility of inhibition of ROS generation by direct sequestration of divalent manganese, and implied the trace presence of a trivalent metal. Further analysis suggested that this trace metal was manganic rather than ferric ion. Ferric ion was able to dampen the reactive oxygen species-generating capacity of manganous chloride, whereas manganic ion markedly promoted this property attributed to manganous ion. Such findings of the potent effects of trace amounts of trivalent cations upon Mn2+-related free radical generation offer resolution of earlier disparate findings concerning the oxidative character of manganese.  相似文献   

16.
Y Briand  R Debise  R Durand 《Biochimie》1975,57(6-7):787-796
Phosphate transport in mitochondria was investigated with respect to its inhibition by NEM. The reactivity of the Pi carrier SH groups was influenced by phosphate or ionophores during preincubation before the addition of NEM. Furthermore in order to obtain some mitochondrial protein fractions where the typical effects of phosphate and ionophores on [14C]-NEM fixations were observed, mitochondria were submitted to hypotonic treatment and sonication. The following results were obtained: 1. -- Phosphate and grisorixin (a new ionophore of the nigericin group) decreased the inhibition of phosphate transport by NEM. The same effect was observed for [14C]-NEM incorporation. 2. -- Valinomycin increased [14C]-NEM incorporation. The valinomycin effect was abolished by phosphate. ClCCP alone affected [14C]-NEM incorporation slightly. Valinomycin plus ClCCP decreased NEM inhibition of phosphate transport and [14C]-NEM incorporation like grisorixin. 3. -- The variability of SH group reactivity can be interpreted by a control of SH group accessibility by transmembrane delta pH as previously suggested. 4. -- Typical effects of phosphate or ionophores were observed in whole pig heart and rat liver mitochondria. These effects were enhanced in the same supernatant protein fraction resulting from sonication in pig heart mitochondria : phosphate decreased [14C]-NEM incorporation by 1,50 nmoles/mg protein, grisorixin by 0.95 nmoles, whereas valinomycin increased it by 0.75 nmoles. For rat liver mitochondria the phosphate effect and the valinomycin increased it by 0.75 nmoles. For rat liver mitochondria the phosphate effect valinomycin effect on [14C]-NEM incorporation were observed in the subparticular fraction obtained after sonification.  相似文献   

17.
G Lutze  W Liese 《FEBS letters》1974,42(1):54-56
Intact mitochondria are able to bind monovalent and divalent metal cations and to release protons in an energy-independent exchange process. Directly accessible binding sites exist in the outer membrane. They seem to be identical for monovalent and divalent metal ions. The inner membrane-matrix-fraction possesses exchange sites after ultrasonic disruption only for monovalent cations, but not for divalent cations.  相似文献   

18.
The protonation state and intracellular distribution of ellipticine were investigated in single human mammary T47D cells by confocal laser microspectrofluorimetry. In the cell nucleus, only the protonated form of ellipticine was detected as a direct consequence of its apparent pK increase upon DNA binding. Both protonated and neutral forms were present in the aqueous cytoplasm, where the pH is close to the drug pK. When cells were incubated in high concentrations of K+, a condition that depolarizes the plasma membrane potential, ellipticine cellular accumulation was reduced. In the cytoplasm, ellipticine was mainly bound to mitochondria, and its protonation equilibrium was shifted toward the neutral form. The fluorescence spectrum of ellipticine bound to mitochondria was insensitive to valinomycin, whereas it was markedly shifted toward the protonated form after carbonyl cyanide p-trifluoromethoxy-phenylhydrazone or nigericin addition. Similar studies with ellipticine bound to isolated mitochondria suggest that it behaves as a fluorescent probe of mitochondrial pH in both isolated mitochondria and single living cells.  相似文献   

19.
The effect of hormones on proton compartmentation in hepatocytes   总被引:2,自引:0,他引:2  
Liver mitochondria isolated from rats treated acutely with glucagon exhibit higher respiration-dependent H+ ion gradients across the mitochondrial inner membrane than mitochondria from control rats. It has been suggested that similar increases in mitochondrial delta pH in situ could stimulate gluconeogenesis, chiefly because the transport of pyruvate into mitochondria would increase in response to the increase in mitochondrial matrix pH. In order to determine whether the increased delta pH observed in vitro in isolated mitochondria also occurs in situ, the effect of glucagon on the pH in the cytosol and mitochondria matrix spaces of isolated hepatocytes was determined. For qualitative results, the spectral responses of intracellularly trapped 6-carboxyfluorescein was used to monitor cytosol pH, while fluorescein-loaded hepatocytes were used to monitor the mitochondrial pH. Hepatocytes were incubated with the diacetate ester derivatives of these dyes. The esters are permeable to the cell membranes, but are rapidly hydrolyzed in the cells. The free unesterified dyes are relatively impermeable to the cell membranes. After being trapped in the cell, 6-carboxyfluorescein remains localized in the cell cytosol, whereas fluorescein is taken up by the mitochondria as a function of the mitochondrial delta pH. In order to quantitate the actual pH in these compartments, the spectral responses (490-465 nm) of 6-carboxyfluorescein-loaded hepatocytes were used to determine the cytosolic pH. Calibration of these responses was obtained within the cell by determination of the dye's differential absorption coefficient (epsilon 490-465 nm) in various high K+ buffers after equilibration of the internal and external pH with valinomycin and the uncoupler 1799. All absorbance values were corrected for dye leakage. Equal hematocrits of unloaded cells were used to correct for absorbance contributions from cellular constituents. The mitochondrial pH was determined by a combination of the indicator dye and [14C]5,5'-demethyloxazolidine-2, 4-dione (DMO) distribution ratio methods. The weak acid DMO freely distributes across the plasma membrane and mitochondrial membrane in whole cells according to the pH gradient across each membrane. Knowledge of the cytoplasmic pH from the 6-carboxyfluorescein data allows the expected distribution of DMO across the plasma membrane to be calculated. The excess accumulation of DMO in intact hepatocytes over that predicted from the plasma membrane pH gradient alone was then used to calculate the pH gradient across the mitochondrial inner membrane. The effects of valinomycin, uncouplers, and hormones on the pH in cytosolic and mitochondrial compartm  相似文献   

20.
The kinetics of branched chain alpha-keto acid uptake and efflux were studied as a function of varied external and matrix pH. Matrix pH was determined by the distribution of 5,5'-dimethyloxazolidine-2,4-dione. When rat heart mitochondria were incubated under transport conditions at pH 7.0 with succinate as respiratory substrate, the matrix pH was significantly greater than 8.0. Matrix pH remained greater than or equal to 8.0 when the medium pH was varied from 6.3 to 8.3, and it was lowered below 8.0 by addition of 5 mM phosphate or uncoupler. No pH gradient was detectable when mitochondria were incubated in the presence of valinomycin and uncoupler. Efflux of alpha-ketoisocaproate or alpha-ketoisovalerate from rat heart mitochondria obeyed first order kinetics. Varying the external pH from 6.6 to 8.3 had no significant effect on efflux, and at an external pH of 7.0, the first order rate constant for efflux was not affected by decreasing the matrix pH. On the other hand, exchange was sensitive to changes in medium but not matrix pH. The K0.5 for external branched chain alpha-keto acid was lowered by changing the medium pH from 7.6 to 6.3. At medium pH values greater than or equal to 8.0 both K0.5 and Vmax were affected. Uptake was determined either by measuring initial rates or was calculated after measuring the first order approach to a final equilibrium value. Unlike efflux, uptake was sensitive to changes in both external and matrix pH. The rate of branched chain alpha-keto acid uptake was stimulated by decreasing the medium pH from 8.3 to 6.3 and by alkalinization of the mitochondrial matrix. The estimated external pK for proton binding was 6.9. The data indicate that the branched chain alpha-keto acid transporter is asymmetric, that is, binding sites for substrate on the inside and outside of the mitochondrial membrane are not identical. alpha-Ketoisocaproate oxidation was measured at 37 degrees C in isolated mitochondria over the pH range of 6.6 to 8.1. Changes in the rate of branched chain alpha-keto acid oxidation, particularly when ATP was added (increase delta pH), were found to parallel the pH effects observed on branched chain alpha-keto acid uptake. Therefore, transport, and by implication oxidation, can be regulated by pH changes within the physiological range. Furthermore, intracellular pH may affect the degree of compartmentation between the cytosolic and mitochondrial branched chain alpha-keto acid pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号