首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through 13C and 15N NMR. To our knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by 13C or 15N NMR. Here we extend our 13C NMR studies to PBGS complexes with [3,3-2H2,3-13C]ALA and report 15N NMR studies of [15N]ALA bound to PBGS. As in our previous 13C NMR studies, observation of enzyme-bound 15N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pKa is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent (kexchange greater than 10(2) s-1). For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C4 of ALA and an active-site lysine. The 13C chemical shift of [3,3-2H2,3-13C]ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between [15N]ALA and hydrazine or hydroxylamine, the 15N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation; again the protons are in rapid exchange with solvent. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C4 of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.  相似文献   

2.
Pyridoxal 5'-phosphate labeled to the extent of 90% with 13C in the 4' (aldehyde) and 5' (methylene) positions has been synthesized. 13C NMR spectra of this material and of natural abundance pyridoxal 5'-phosphate are reported, as well as 13C NMR spectra of the Schiff base formed by reaction of pyridoxal 5'-phosphate with n-butylamine, the secondary amine formed by reduction of this Schiff base, the thiazolidine formed by reaction of pyridoxal 5'-phosphate with cysteine, the hexahydropyrimidine formed by reaction of pyridoxal 5'-phosphate with 1,3-diaminobutane, and pyridoxamine 5'-phosphate. The range of chemical shifts for carbon 4' in these compounds is more than 100 ppm, and thus this chemical shift is expected to be a sensitive indicator of structure in enzyme-bound pyridoxal 5'-phosphate. The chemical shift of carbon 5', on the other hand, is insensitive to these structure changes. 13C NMR spectra have been obtained at pH 7.8 and 9.4 for D-serine dehydratase (Mr = 46,000) containing natural abundance pyridoxal 5'-phosphate and containing 13C-enriched pyridoxal 5'-phosphate. The enriched material contains two new resonances not present in the natural abundance material, one at 167.7 ppm with a linewidth of approximately 24 Hz, attributed to carbon 4' of the Schiff base in the bound coenzyme, and one at 62.7 Hz with a linewidth of approximately 48 Hz attributed to carbon 5' of the bound Schiff base. A large number of resonances due to individual amino acids are assigned. The NMR spectrum changes only slightly when the pH is raised to 9.4. The widths of the two enriched coenzyme resonances indicate that the coenzyme is rather rigidly bound to the enzyme but probably has limited motional freedom relative to the protein. 13C NMR spectra have been obtained for L-glutamate decarboxylase containing natural abundance pyridoxal 5'-phosphate and 13C-enriched pyridoxal 5'-phosphate. Under conditions where the two enriched 13C resonances are clearly visible in D-serine dehydratase, no resonances are visible in enriched L-glutamate decarboxylase, presumably because the coenzyme is rigidly bound to the protein and the 300,000 molecular weight of this enzyme produces very short relaxation times for the bound coenzyme and thus very broad lines.  相似文献   

3.
The pH dependence of 31P-NMR spectra of pig cytosolic aspartate aminotransferase, containing either N-(5'-phosphopyridoxyl)-L-aspartate or pyridoxal 5'-deoxymethylenephosphonate in place of the normal coenzyme pyridoxal 5'-phosphate, has been analysed. The chemical shifts of phosphopyridoxylaspartate and of pyridoxal 5'-deoxymethylenephosphonate model Schiff base in free solution show pK values of 6.3 and 7.4, attributable to the second deprotonation step of phosphate and phosphonate, respectively. However, these compounds behave very differently when bound to apoaspartate aminotransferase. 31P-NMR spectra of these enzyme derivatives indicate that the phosph(on)ate group remains dianionic throughout the pH range 4-8.5. A clear correlation between apparent pK values obtained from spectrophotometric titration of the coenzyme chromophore and those obtained by 31P NMR indicates that the same ionisation is being reported by both methods. The data are interpreted, on the basis of available crystallographic structures of chicken mitochondrial aspartate aminotransferase, to indicate that in each case the alteration in 31P chemical shift results from a conformational change in the coenzyme 5' side chain, in which one of the structures involves a near-eclipsed pair of bonds. Such a stressed conformation produces slight alterations in bond angles around the phosphorus atom, which in turn cause the observed change in 31P chemical shift. The evidence is taken to indicate that in this case 31P NMR is a sensitive reporter of stress in enzyme-bound pyridoxal 5'-phosphate and its derivatives.  相似文献   

4.
Measurement of the stereospecific release of the pro-S proton from C-4' of enzyme-bound pyridoxamine 5'-phosphate provides an experimental means to probe parts of the active site of aspartate aminotransferase independently of substrate turnover (Tobler, H. P., Christen, P., and Gehring, H. (1986) J. Biol. Chem. 261, 7105-7108). The release of pro-S 3H from enzyme-bound [3H]pyridoxamine 5'-phosphate is 30,000 times faster than from free coenzyme. Enzyme-bound [3H]pyridoxine 5'-phosphate is not detritiated suggesting an essential role of the 4'-amino group. Formation of the unproductive complex of the [3H]pyridoxamine 5'-phosphate-enzyme with aspartate or glutamate results in a 400-fold acceleration of 3H release. In contrast, addition of borohydride or cyanoborohydride immediately stops 3H release. Experiments with a fluorescent reporter group and with differential chemical modifications indicate that the activating effect of aspartate on the release of 3H is accompanied by a shift of the so-called open/closed conformational equilibrium of the enzyme (Kirsch, J.F., Eichele, G., Ford, G. C., Vincent, M.G., Jansonius, J.N., Gehring, H., and Christen, P. (1984) J. Mol. Biol. 174, 497-525) toward the closed conformation; the inhibiting effect of borohydride and cyanoborohydride appears to be accompanied by a shift toward the open conformation. Apparently, at least part of the catalytic apparatus of aspartate aminotransferase becomes fully operative only in the closed conformation of the enzyme.  相似文献   

5.
Phosphypyridoxyl trifluoroethylamine has been synthesized as an active site-directed 19F NMR probe for aspartate transaminase. This coenzyme derivative adds stoichiometrically to the apotransaminase as observed by both fluorescence and circular dichroism measurements. The fluorinated phosphypyridoxamine derivative, when bound to the apotransaminase, will not dissociate upon extensive dialysis or passage through Sephadex G-25. The compound behaves as a pyridoxamine phosphate derivative and not as a coenzyme-substrate complex, since both competing anions and dicarboxylic acid inhibitors still bind to the phosphopyridoxyl trifluoroethylamine enzyme. The 19F NMR spectra of the enzyme-bound phosphopyridoxyl trifluoroethylamine were measured as a function of pH, ionic strength, and temperature. The 19F MNR of the enzyme-bound coenzyme derivative revealed no predetermined asymmetry in the subunits of aspartate transaminase insolution in terms of differences in chemical shift or resonance line shape between the two environments. A pH-dependent chemical shift change of the single 19F resonance was observed, which is consistent with the influence of a single ionization with an apparent pKa of 8.4 in 0.10 M KCl at 30 degrees. Increasing the ionic strength resulted in increasing values for the observed pKa, the highest recorded value was 9.1 in 3.0 M KCl. The temperature dependence of the pH titration of the chemical shift gives deltaH' of ionization of 10.5 kcal/mol. The evidence suggests a possible epsilon-amino group, electrostatically affected by positive charges, being responsible for the titration effect of the active site-bound fluorine derivative of pyridoxamine phosphate.  相似文献   

6.
The apoenzyme of NADPH oxidoreductase, 'old yellow enzyme', was reconstituted with selectively 13C-enriched flavin mononucleotides and investigated by 13C NMR spectroscopy. The 13C NMR results confirm the results obtained by 15N NMR spectroscopy and yield additional information about the coenzyme-apoenzyme interaction. A strong deshielding of the C(2) and C(4) atoms of enzyme-bound FMN both in the oxidized and reduced state is observed, which is supposed to be induced by hydrogen-bond formation between the protein and the two carbonyl groups at C(2) and C(4) of the isoalloxazine ring system. The chemical shifts of all 13C resonances of the flavin in the two-electron-reduced state indicate that the N(5) atom is sp3-hybridized. From 31P NMR measurements it is concluded that the FMN phosphate group is not accessible to bulk solvent. The unusual 31P chemical shift of FMN in old yellow enzyme seems to indicate a different binding mode of the FMN phosphate group in this enzyme as compared to the flavodoxins. The 13C and 15N NMR data on the old-yellow-enzyme--phenolate complexes show that the atoms of the phenolate are more deshielded whereas the atoms of the enzyme-bound isoalloxazine ring are more shielded upon complexation. A non-linear correlation exists between the chemical shifts of the N(5) and the N(10) atoms and the pKa value of the phenolate derivative bound to the protein. Since the chemical shifts of N(5), N(10) and C(4a) are influenced most on complexation it is suggested that the phenolate is bound near the pyrazine ring of the isoalloxazine system. 15N NMR studies on the complex between FMN and 2-aminobenzoic acid indicate that the structure of this complex differs from that of the old-yellow-enzyme--phenolate complexes.  相似文献   

7.
Baykal AT  Kakalis L  Jordan F 《Biochemistry》2006,45(24):7522-7528
Appropriate compounds were synthesized to create models for the 1',4'-imino tautomer of the 4'-aminopyrimidine ring of thiamin diphosphate recently found to exist on the pathway of enzymatic reactions requiring this cofactor [Jordan, F., and Nemeria, N. S. (2005) Bioorg. Chem. 33, 190-215]. The N1-methyl-4-aminopyrimidinium compounds synthesized on treatment with a strong base produce the 1,4-imino tautomer whose UV spectrum indicates a maximum between 300 and 320 nm, depending on the absence or presence of a methyl group at the 4-amino nitrogen. The lambda(max) found is in the same wavelength range as the positive circular dichroism band observed on several enzymes and showed a very strong dependence on solvent dielectric constant. To help with the 15N chemical shift assignments, the model compounds were specifically labeled with 15N at the amino nitrogen atom. The chemical shift of the amino nitrogen was deshielded by N1-methylation and then dramatically further deshielded by more than 100 ppm on formation of the 1,4-iminopyrimidine tautomer. Both the UV spectroscopic values and the 15N chemical shift for the 1,4-iminopyrimidine tautomer should serve as useful guides to the assignment of enzyme-bound signals.  相似文献   

8.
B D Ray  B D Rao 《Biochemistry》1988,27(15):5574-5578
31P NMR measurements were made (at 121.5 MHz and 5 degrees C) on enzyme-bound substrate complexes of 3-phosphoglycerate kinase in order to address three questions pertaining to (i) the integrity of the enzyme-substrate complexes with Mg(II) in the presence of sulfate concentrations typical of those used for crystallization in X-ray studies, (ii) the relative affinities of Mg(II) to ATP bound at the two sites on the enzyme, and (iii) the pH behavior of the different phosphate groups in the enzyme complexes. 31P chemical shift and spin-spin coupling constant changes showed that at concentrations of 0.5 M and higher, sulfate ion interferes with Mg(II) chelation to ATP and ADP free in solution as well as in their enzyme-bound complexes. The effect on enzyme complexes is stronger for the E.MgATP complex than for the E.MgADP complex. Sulfate ion (50 mM) also causes a approximately 0.5 ppm upfield chemical shift of the 31P resonance of enzyme-bound 3-P-glycerate even in the absence of ATP or Mg(II). A quantitative estimate of the dispartate affinities of Mg(II) to ATP bound at the two sites on the enzyme was made on the basis of computer simulation of changes in the line shape of beta-P (ATP) resonance and of changes in 31P chemical shift of the corresponding gamma-P (ATP) in the E.ATP complex with increasing [Mg(II)]. The concentrations of the relevant species that contribute to these 31P NMR signals were computed by assuming independent binding at the two sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The apoprotein of glucose oxidase from Aspergillus niger was reconstituted with specifically 15N- and 13C-enriched FAD derivatives and investigated by 15N- and 13C-NMR spectroscopy. On the basis of the 15N-NMR results it is suggested that, in the oxidized state of glucose oxidase, hydrogen bonds are formed to the N(3) and N(5) positions of the isoalloxazine system. The hydrogen bond to N(3) is more pronounced than that to N(5) as compared with the respective hydrogen bonds formed between FMN and water. The resonance position of N(10) indicates a small decrease in sp2 hybridization compared to free flavin in water. Apparently the isoalloxazine ring is not planar at this position in glucose oxidase. Additional hydrogen bonds at the carbonyl groups of the oxidized enzyme-bound FAD were derived from the 13C-NMR results. A strong downfield shift observed for the C(4a) resonance may be ascribed in part to the decrease in sp2 hybridization at the N(10) position and to the polarization of the carbonyl groups at C(2) and C(4). The polarization of the isoalloxazine ring in glucose oxidase is more similar to FMN in water than to that of tetraacetyl-riboflavin in apolar solvents. In the reduced enzyme the N(1) position is anionic at pH 5.6. The pKa is shifted to lower pH values by at least 1 owing to the interaction of the FAD with the apoprotein. As in the oxidized state of the enzyme, a hydrogen bond is also formed at the N(3) position of the reduced flavin. The N(5) and N(10) resonances of the enzyme-bound reduced FAD indicate a decrease in the sp2 character of these atoms as compared with that of reduced FMN in aqueous solution. Some of the 15N- and 13C-resonance positions of the enzyme-bound reduced cofactor are markedly pH-dependent. The pH dependence of the N(5) and C(10a) resonances indicates a decrease in sp2 hybridization of the N(5) atom with increasing pH of the enzyme solution.  相似文献   

10.
The orientation of the insect antibiotic peptide cecropin A (CecA) in the phospholipid bilayer membrane was determined using (15)N solid-state NMR spectroscopy. Two peptide samples, each specifically labeled with (15)N at Val(11) or Ala(27), were synthesized by solid phase techniques. The peptides were incorporated into phospholipid bilayers, prepared from a mixture of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol, and oriented on glass slides. The (15)N chemical shift solid-state NMR spectra from these uniaxially oriented samples display a single (15)N chemical shift frequency for each labeled residue. Both frequencies are near the upfield end of the (15)N chemical shift powder pattern, as expected for an alpha-helix with its long axis in the plane of the membrane and the NH bonds perpendicular to the direction of the magnetic field. These results support a mechanism of action in which CecA binds to and covers the membrane surface, thereby causing a general destabilization and leakiness of the lipid bilayer membrane. The data are discussed in relation to a proposed mechanism of membrane lysis and bacterial killing via an ion channel activity of CecA.  相似文献   

11.
Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin   总被引:5,自引:0,他引:5  
The visible absorption of bacteriorhodopsin (bR) is highly sensitive to pH, the maximum shifting from 568 nm (pH 7) to approximately 600 nm (pH 2) and back to 565 nm (pH 0) as the pH is decreased further with HCl. Blue membrane (lambda max greater than 600 nm) is also formed by deionization of neutral purple membrane suspensions. Low-temperature, magic angle spinning 13C and 15N NMR was used to investigate the transitions to the blue and acid purple states. The 15N NMR studies involved [epsilon-15N]lysine bR, allowing a detailed investigation of effects at the Schiff base nitrogen. The 15N resonance shifts approximately 16 ppm upfield in the neutral purple to blue transition and returns to its original value in the blue to acid purple transition. Thus, the 15N shift correlates directly with the color changes, suggesting an important contribution of the Schiff base counterion to the "opsin shift". The results indicate weaker hydrogen bonding in the blue form than in the two purple forms and permit a determination of the contribution of the weak hydrogen bonding to the opsin shift at a neutral pH of approximately 2000 cm-1. An explanation of the mechanism of the purple to blue to purple transition is given in terms of the complex counterion model. The 13C NMR experiments were performed on samples specifically 13C labeled at the C-5, C-12, C-13, C-14, or C-15 positions in the retinylidene chromophore. The effects of the purple to blue to purple transitions on the isotropic chemical shifts for the various 13C resonances are relatively small. It appears that bR600 consists of at least four different species. The data confirm the presence of 13-cis- and all-trans-retinal in the blue form, as in neutral purple dark-adapted bR. All spectra of the blue and acid purple bR show substantial inhomogeneous broadening which indicates additional irregular distortions of the protein lattice. The amount of distortion correlates with the variation of the pH, and not with the color change.  相似文献   

12.
R S Ehrlich  R F Colman 《Biochemistry》1992,31(49):12524-12531
The coenzyme selectivity of pig heart NAD-dependent and NADP-dependent isocitrate dehydrogenase has been investigated by nuclear magnetic resonance through the use of coenzyme analogues. For both isocitrate dehydrogenases, more than 10-fold lower maximal activity is observed with thionicotinamide adenine dinucleotide [sNAD(P)+] than with NAD(P)+ or acetylpyridine adenine dinucleotide [acNAD-(P)+] as coenzyme. Nuclear Overhauser effect measurements failed to reveal any differences in the adenine-ribose conformations among the enzyme-bound analogues. The 2'-phosphate resonance of the enzyme-bound NADP+ analogues showed the same change in chemical shift observed for the natural coenzyme and revealed the same lack of pH dependence in the range from pH 5.4 to 8.2. NADP-dependent isocitrate dehydrogenase exhibits only small differences in Michaelis constants for the coenzymes with various nicotinamide substituents, reflecting a predominant role for the adenosine moiety in binding. The conformation of the bound nicotinamide-ribose of the natural coenzymes was appreciably different from that of the coenzyme, sNAD(P)+, which shows low catalytic activity. For both isocitrate dehydrogenases, sNAD(P)+ bound to the enzymes exhibits a mixture of syn and anti conformations while only the anti conformation can be detected for NAD(P)+. Chemical shifts of NAD(P)+ enriched with 13C in the carboxamide indicate that interaction of this group with the enzymes may play a role in positioning the nicotinamide ring to participate in catalysis. Our results suggest that, although interaction of the nicotinamide moiety with the enzymes contributes relatively little to the energy of interaction in the binary complex, the enzymes must correctly position this group for the catalytic event.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
R S Ehrlich  R F Colman 《Biochemistry》1985,24(20):5378-5387
The binding of coenzymes, NADP+ and NADPH, and coenzyme fragments, 2'-phosphoadenosine 5'-(diphosphoribose), adenosine 2',5'-bisphosphate, and 2'-AMP, to pig heart NADP+-dependent isocitrate dehydrogenase has been studied by proton NMR. Transferred nuclear Overhauser enhancement (NOE) between the nicotinamide 1'-ribose proton and the 2-nicotinamide ring proton indicates that the nicotinamide-ribose bond assumes an anti conformation. For all nucleotides, a nuclear Overhauser effect between the adenine 1'-ribose proton and 8-adenine ring proton is observed, suggesting a predominantly syn adenine--ribose bond conformation for the enzyme-bound nucleotides. Transferred NOE between the protons at A2 and N6 is observed for NADPH (but not NADP+), implying proximity between adenine and nicotinamide rings in a folded enzyme-bound form of NADPH. Line-width measurements on the resonances of free nucleotides exchanging with bound species indicate dissociation rates ranging from less than 7 s-1 for NADPH to approximately 1600 s-1 for adenosine 2',5'-bisphosphate. Substrate, magnesium isocitrate, increases the dissociation rate for NADPH about 10-fold but decreases the corresponding rate for phosphoadenosine diphosphoribose and adenosine 2',5'-bisphosphate about 10-fold. These effects are consistent with changes in equilibrium dissociation constants measured under similar conditions. The 1H NMR spectrum of isocitrate dehydrogenase at pH 7.5 has three narrow peaks between delta 7.85 and 7.69 that shift with changes in pH and hence arise from C-4 protons of histidines. One of those, with pK = 5.35, is perturbed by NADP+ and NADPH but not by nucleotide fragments, indicating that this histidine is in the region of the nicotinamide binding site. Observation of nuclear Overhauser effects arising from selective irradiation at delta 7.55 indicates proximity of either a nontitrating histidine or an aromatic residue to the adenine ring of all nucleotides. In addition, selective irradiation of the methyl region of the enzyme spectrum demonstrates that the adenine ring is close to methyl side chains. The substrate magnesium isocitrate produces no observable differences in these protein--nucleotide interactions. The alterations in enzyme--nucleotide conformation that result in changes in affinity in the presence of substrate must involve either small shifts in the positions of amino acid side chains or changes in groups not visible in the proton NMR spectrum.  相似文献   

14.
A pulse sequence that yields three-dimensional 1H chemical shift / 1H-15N heteronuclear dipolar coupling / 15N chemical shift solid-state NMR spectra is demonstrated on a uniformly 15N labeled membrane protein in magnetically aligned phospholipid bilayers. Based on SAMPI4, the pulse sequence yields high resolution in all three dimensions at a 1H resonance frequency of 900 MHz with the relatively low rf field strength (33 kHz) available for a lossy aqueous sample with a commercial spectrometer and probe. The 1H chemical shift frequency dimension is shown to select among amide resonances, which will be useful in studies of larger polytopic membrane proteins where the resonances overlap in two-dimensional spectra. Moreover, the 1H chemical shift, which can be measured from these spectra, provides an additional orientationally dependent frequency as input for structure calculations. Both Alexander A. Nevzorov and Sang Ho Park contributed equally to this work.  相似文献   

15.
The amino protons of 15N-labeled DNA were studied as a possible structural probe in NMR investigations of the interaction of DNA with various ligands. Since the imino protons are located in the center of the double helix, and variations of their chemical shift values are difficult to interpret in terms of structural changes, these probes are not very useful. Instead, amino protons are located in the major or minor groove of the DNA and are often directly involved in the binding of a ligand. For a selective probing 4-15NH2-2'-deoxycytidine and 6-15NH2-2'-deoxyadenosine were obtained by chemical synthesis. The labeled nucleosides were introduced in distinct positions of oligodeoxynucleotides by large-scale DNA synthesis. Direct 15N NMR and 1H-15N multiple quantum NMR were applied to detect the corresponding 15N labels or protons attached to the 15N labels. Chemical shift values for the cytidine and the adenosine amino nitrogen and proton resonances of a symmetric 18 base pair lac operator sequence are reported.  相似文献   

16.
31P and 15N chemical shifts and 31P-15N bond lengths have been measured with solid-state NMR techniques in two inhibitors of thermolysin, carbobenzoxy-Glyp-L-Leu-L-Ala (ZGpLA) and carbobenzoxy-L-Phep-L-Leu-L-Ala (ZFpLA), both as free lithium salts and when bound to the enzyme. Binding of both inhibitors to thermolysin results in large changes in the 31P chemical shifts. These changes are more dramatic for the tighter binding inhibitor ZFpLA, where a approximately 20 ppm downfield movement of the 31P isotropic chemical shift (sigma iso) is observed. This shift is due to changes in the shift tensor elements sigma 11 and sigma 22, while sigma 33 remains essentially constant. We observed a similar pattern for ZGpLA, but only a approximately 5 ppm change occurs in sigma iso. The changes in the 15N chemical shifts for both inhibitors are small upon binding, amounting to downfield shifts of 2 and 4 ppm for ZGpLA and ZFpLA, respectively. This indicates that there are no changes in the protonation state of the 15N in either the ZFpLA- or the ZGpLA-thermolysin complex. NMR distance measurements yield a P-N bond length rP-N = 1.68 +/- 0.03 A for the tight binding inhibitor ZFpLA both in its free lithium salt form and in its thermolysin-ZFpLA complex, a distance that is much shorter than the 1.90-A distance reported by X-ray crystallography studies [Holden et al. (1987) Biochemistry 26, 8542-8553].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
(4,3)D, (5,3)D and (5,2)D GFT triple resonance NMR experiments are presented for polypeptide backbone and (13)C(beta) resonance assignment of (15)N/(13)C labeled proteins. The joint sampling of m = 2, 3 or 4 indirect chemical shift evolution periods of 4D and 5D NMR experiments yields the measurement of 2(m) - 1 linear combinations of shifts. To obtain sequential assignments, these are matched in corresponding experiments delineating either intra or interresidue correlations. Hence, an increased set of matches is registered when compared to conventional approaches, and the 4D or 5D information allows one to efficiently break chemical shift degeneracy. Moreover, comparison of single-quantum chemical shifts obtained after a least squares fit using either the intra or the interresidue data demonstrates that GFT NMR warrants highly accurate shift measurements. The new features of GFT NMR based resonance assignment strategies promise to be of particular value for establishing automated protocols.  相似文献   

18.
The effects of four species of denitrifying bacteria on the conversion of [15N]nitrite to trioxodinitrate (HN2O3-) and N2O and of trioxodinitrate to N2O were studied. For all species, the N2O produced in the presence of [15N]nitrite and trioxodinitrate was isotopically randomized throughout the period of incubation and was not composed at the outset predominantly of 14N2O or 14N2O plus 15N2O. The N2O produced was also heavily enriched in 15N at times when the trioxodinitrate pool was only weakly enriched in 15N. By 15N NMR, the N(2) position, but not the N(1) position, of trioxodinitrate was found to become progressively labeled with 15N during incubation with [15N]nitrite. These results argue that (a) the N-N bond of trioxodinitrate is not preserved in its conversion to N2O, (b) trioxodinitrate can be neither a free nor enzyme-bound intermediate in denitrifying bacteria, and (c) the pathways from nitrite and trioxodinitrate involve a common mononitrogen intermediate. The conclusion that this intermediate is probably nitroxyl (HNO), at least with Paracoccus denitrificans and Pseudomonas stutzeri, provides indirect evidence that N-N bond formation in denitrification can occur through the dimerization of nitroxyl.  相似文献   

19.
Uridine is uniquely conserved at position 8 in elongator tRNAs and binds to A14 to form a reversed Hoogsteen base pair which folds the dihydrouridine loop back into the core of the L-shaped molecule. On the basis of 1H NMR studies, Hurd and co-workers (Hurd, R. E., Robillard, G. T., and Reid, B. R. (1977) Biochemistry 16, 2095-2100) concluded that the interaction between positions 8 and 14 is absent in Escherichia coli tRNAs with only 3 base pairs in the dihydrouridine stem. We have taken advantage of the unique 15N chemical shift of N3 in thiouridine to identify 1H and 15N resonances for the imino units of S4U8 and s4U9 in E. coli tRNASer1 and tRNATyr2. Model studies with chloroform-soluble derivatives of uridine and 4-thiouridine show that the chemical shifts of the protons in the imino moieties move downfield from 7.9 to 14.4 ppm and from 9.1 to 15.7 ppm, respectively; whereas, the corresponding 15N chemical shifts move downfield from 157.5 to 162.5 ppm and from 175.5 to 180.1 ppm upon hydrogen bonding to 5'-O-acetyl-2',3'-isopropylidene adenosine. The large difference in 15N chemical shifts for U and s4U allows one to unambiguously identify s4U imino resonances by 15N NMR spectroscopy. E. coli tRNASer1 and tRNATyr2 were selectively enriched with 15N at N3 of all uridines and modified uridines. Two-dimensional 1H-15N chemical shift correlation NMR spectroscopy revealed that both tRNAs have resonances with 1H and 15N chemical shifts characteristic of s4UA pairs. The 1H shift is approximately 1 ppm upfield from the typical s4U8 resonance at 14.8 ppm, presumably as a result of local diamagnetic anisotropies. An additional s4U resonance with 1H and 15N shifts typical of interaction of a bound water or a sugar hydroxyl group with s4U9 was discovered in the spectrum of tRNATyr2. Our NMR results for tRNAs with 3-base pair dihydrouridine stems suggest that these molecules have an U8A14 tertiary interaction similar to that found in tRNAs with 4-base pair dihydrouridine stems.  相似文献   

20.
We have recorded 1H NMR spectra in H2O for exchangeable protons of four pyridoxal phosphate-dependent enzymes: D-serine dehydratase, aspartate aminotransferase, tryptophan: indole-lyase and glutamate decarboxylase. The molecular masses range from 48-250 kDa. In every case there are downfield peaks which are lost when the apoenzyme is formed. In most cases some peaks shift in response to interactions with substrates and inhibitors and with changes in pH. We associate one downfield resonance with the proton on the ring nitrogen of the coenzyme and others with imidazole groups that interact with coenzyme or substrates. The chemical shift for the coenzyme-bound proton differs for free enzyme, substrate Schiff base or quinonoid forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号