首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lactoferrin, a major whey protein of human milk, is considered as growth promoter for bifidobacteria, the predominant microorganisms of human intestine. In the present study, in vitro growth promotion and cell binding ability of bovine lactoferrin to several strains of Bifidobacterium longum have been demonstrated. A dose-dependent as well as strain-dependent growth promotion effect by lactoferrin was observed. Cell binding ability of lactoferrin was inspected under an inverted confocal laser scanning microscope by incubation bacterial cells with biotinylated bovine lactoferrin and FITC-conjugated avidin. Fluorescence staining showed bovine lactoferrin binding to all tested strains. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the extracted membrane and cytosolic fraction of each B. longum strain by far-Western blot technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on these results, we suggest that existence of lactoferrin-binding protein could be a common characteristic in bifidobacteria. It can also be hypothesized that lactoferrin-binding protein in bifidobacteria is not only involved in growth stimulation mechanism but also could play different roles.  相似文献   

2.
Human whole saliva induces aggregation of Streptococcus mutans cells via an interaction between a surface protein antigen (PAc) of the organism and salivary agglutinin. Bovine milk inhibits the saliva-induced aggregation of S. mutans. In this study, the milk component that possesses inhibitory activity against this aggregation was isolated and found to be lactoferrin. Surface plasmon resonance analysis indicated that bovine lactoferrin binds more strongly to salivary agglutinin, especially to high molecular mass glycoprotein, which is a component of the agglutinin, than to recombinant PAc. The binding of bovine lactoferrin to salivary agglutinin was thermostable, and the optimal pH for binding was 4.0. To identify the saliva-binding region of bovine lactoferrin, 11 truncated bovine lactoferrin fragments were constructed. A fragment corresponding to the C-terminal half of the lactoferrin molecule had a strong inhibitory effect on the saliva-induced aggregation of S. mutans, whereas a fragment corresponding to the N-terminal half had a weak inhibitory effect. Seven shorter fragments corresponding to lactoferrin residues 473-538 also showed a high ability to inhibit the aggregation of S. mutans. These results suggest that residues 473-538 of bovine lactoferrin are important in the inhibition of saliva-induced aggregation of S. mutans.  相似文献   

3.
4.
All strains of Streptococcus uberis evaluated bound to lactoferrin (Lf) in milk as detected by polyacrylamide gel electrophoresis and Western blotting. A biotin-avidin-based microplate binding assay and ELISA also revealed that these bacterial strains bound to purified Lf. Binding of bacteria of Lf was not inhibited by mannose and galactose, indicating that glycosidic domains of the Lf molecule were not involved in binding. Lf binding was also unaffected by bovine transferrin. Western blot analysis demonstrated that there were at least two bacterial proteins involved in Lf-binding. Lf binding by S. uberis could enable this bacterium to acquire iron necessary for its growth.  相似文献   

5.
Bovine herpesvirus 1 (BoHV-1) is widely distributed among cattle populations and has been associated with cells, fluids, and tissues collected from donor animals for use in reproductive technologies. The purpose of this study was to determine if lactoferrin would inhibit BoHV-1 in cell culture and to evaluate if embryos could develop normally when cultured in vitro with lactoferrin. In Experiment 1, lactoferrin (10 mg/mL) inhibited up to 25,000 plaque forming units (PFU)/mL of BoHV-1 in Madin Darby bovine kidney (MDBK) cell culture. In Experiment 2, lactoferrin (10 mg/mL) combined with cidofovir (62.5 microg/mL) inhibited up to 100,200 PFU/mL of virus in cell culture. In Experiment 3, following fertilization, presumptive zygotes were cultured in media containing lactoferrin (10, 5, and 2.5 mg/mL). Embryonic development and quality were assessed, and embryonic viability was determined by counting the nucleated cells of developed blastocysts. While lactoferrin did not affect the nucleated cell count of the treated embryos, it did significantly decrease blastocyst development. In conclusion, lactoferrin from bovine milk can inhibit BoHV-1 in cell culture. However, supplementation of in vitro culture medium with lactoferrin inhibits blastocyst development of in vitro-produced embryos.  相似文献   

6.
Characterization of the infection-responsive bovine lactoferrin promoter   总被引:7,自引:0,他引:7  
Zheng J  Ather JL  Sonstegard TS  Kerr DE 《Gene》2005,353(1):107-117
  相似文献   

7.
The purpose of this study was to characterize the ribonuclease (RNase) and cell-free translation-inhibitory activities of lactoferrin isolated from bovine milk. It was found that bovine lactoferrin exhibited ribonucleolytic activity toward yeast transfer RNA in a dose-dependent manner. The pH optimum for this RNase activity was in the vicinity of 7.5. Lactoferrin exerted RNase activity on poly C with an activity of 2.15 U/mg. No activity was detected toward poly A, poly G, and poly U. The milk protein inhibited cell-free translation in rabbit reticulocyte lysate with an IC50 of 9.6 microM. The protein was devoid of N-glycosidase activity characteristic of ribosome inactivating proteins which also possess RNase and cell-free translation-inhibitory activities. It inhibited superoxide radical formation.  相似文献   

8.
In the present study, lactoferrin binding to bifidobacteria and detection of lactoferrin-binding protein in membrane fractions of several bifidobacteria have been demonstrated. This is the first report showing the binding of bovine lactoferrin to four Bifidobacterium spp. (B. infantis, B. breve, B. bifidum, B. longum) incubated with biotinylated lactoferrin and fluorescein conjugated-avidin and observed under an inverted confocal laser scanning microscope. Fluorescence staining showed lactoferrin binding at the pole of the bacterial cells. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the membrane fraction of Bifidobacterium spp. by far western blotting technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on the results of this and previously reported studies, we suggest that binding of lactoferrin to Bifidobacterium longum is strain-dependent.  相似文献   

9.
Milk is the single source of nutrients for the newborn mammal. The composition of milk of different mammals has been adapted during evolution of the species to fulfill the needs of the offspring. Milk not only provides nutrients, but it also serves as a medium for transfer of host defense components to the offspring. The host defense proteins in the milk of different mammalian species are expected to reveal signatures of evolution. The aim of this study is therefore to study the difference in the host defense proteome of human and bovine milk. We analyzed human and bovine milk using a shot-gun proteomics approach focusing on host defense-related proteins. In total, 268 proteins in human milk and 269 proteins in bovine milk were identified. Of these, 44 from human milk and 51 from bovine milk are related to the host defense system. Of these proteins, 33 were found in both species but with significantly different quantities. High concentrations of proteins involved in the mucosal immune system, immunoglobulin A, CD14, lactoferrin, and lysozyme, were present in human milk. The human newborn is known to be deficient for at least two of these proteins (immunoglobulin A and CD14). On the other hand, antimicrobial proteins (5 cathelicidins and lactoperoxidase) were abundant in bovine milk. The high concentration of lactoperoxidase is probably linked to the high amount of thiocyanate in the plant-based diet of cows. This first detailed analysis of host defense proteins in human and bovine milk is an important step in understanding the function of milk in the development of the immune system of these two mammals.  相似文献   

10.
In our previous study, transgenic mice were generated that expressed human lactoferrin (hLF) in milk using cDNA under control of the 2 kb bovine beta-casein promoter. The expression level of the protein in milk of 7 mice ranged from 1 to 200 microg/ml; 1 to 34 microg/ml in 6 mice and 200 microg/ml in 1 mouse. With the aim of inducing higher expression of the protein, we constructed an expression cassette comprised of 10 kb of the bovine beta-casein gene promoter and the hLF genomic sequence in place of the cDNA. The hLF genomic sequence of about 27 kb, spanning 23 kb of the entire coding region and 4 kb of the 3'-flanking sequence, was placed downstream the bovine beta-casein promoter. In total, 8 transgenic mice were generated from 31 mice (transgenic rate of 25.8%) born from the embryos microinjected with the 40-kb hLF expression cassette. Mammary-specific expression of the transgene was addressed by performing Northern hybridization of the total RNAs from various tissues of transgenic mice. Immunoblot analysis showed that the recombinant protein expressed in milk has the same molecular weight as the native protein. The amount of the protein in milk of 5 mice ranged from 60 to 6,600 microg/ml when judged by ELISA analysis. Three mice expressed the protein at the level higher than 500 microg/ml. These data suggest that the genomic lactoferrin sequence represents a valuable element for the efficient expression of the protein in milk of transgenic animals.  相似文献   

11.
Bovine lactoferrin catalyzes the hydrolysis of synthetic substrates (i.e., Z-aminoacyl-7-amido-4-methylcoumarin). Values of Km and kcat for the bovine lactoferrin catalyzed hydrolysis of Z-Phe-Arg-7-amido-4-methylcoumarin are 50 microM and 0.03 s(-1), respectively, the optimum pH value is 7.5 at 25 degrees C. The bovine lactoferrin substrate specificity is similar to that of trypsin, while the hydrolysis rate is several orders of magnitude lower than that of trypsin. The bovine lactoferrin catalytic activity is irreversibly inhibited by the serine-protease inhibitors PMSF and Pefabloc. Moreover, both iron-saturation of the protein and LPS addition strongly inhibit the bovine lactoferrin activity. Interestingly, bovine lactoferrin undergoes partial auto-proteolytic cleavage at positions Arg415-Lys416 and Lys440-Lys441. pKa shift calculations indicate that several Ser residues of bovine lactoferrin display the high nucleophilicity required to potentially catalyze substrate cleavage. However, a definitive identification of the active site awaits further studies.  相似文献   

12.
When milk-fed mice were orally inoculated with Clostridium ramosum C1, this strain proliferated in the gut and became the dominant component of the fecal microflora. In this experimental model, bovine lactoferrin (bLF) administered with milk suppressed the proliferation of this strain in vivo and decreased the numbers of C. ramosum and other bacteria in the feces. This bacteriostatic effect of bLF was dependent on the concentration of bLF, the duration of feeding, and the administered dose of C. ramosum C1. Compared with bovine serum albumin, ovalbumin, bovine whey protein isolate, or bovine casein, only bLF showed this specific activity. A similar effect of bLF was observed after oral inoculation with C. ramosum JCM 1298, C. paraputrificum VPI 6372, or C. perfringens ATCC 13124. A hydrolysate prepared by digestion of bLF with porcine pepsin showed the same inhibitory effect on proliferation of C. ramosum in vivo as occurred with undigested bLF. These results indicate that ingested bLF can exert a bacteriostatic effect against clostridia in the gut even after it has been digested to some extent.  相似文献   

13.
Bovine lactoferrin is an iron-binding protein present in mammary gland secretions. The exposure of Streptococcus agalactiae to bovine lactoferrin resulted in the binding of this protein to all the 12 strains of bovine origin tested, and also, although to a lesser degree, to the five tested strains of human origin. The interaction of lactoferrin with one high-binding bovine strain (24/60, the prototype NT/X strain) was studied. Binding was time-dependent, dose-dependent, and saturable. The binding of lactoferrin was slightly affected by cultivation conditions, and appeared to be heat-stable. The binding of biotinylated lactoferrin was inhibited by unlabelled lactoferrin but not by bovine serum albumin.  相似文献   

14.
Cryopreserved bovine mammary epithelial cells prepared from lactating mammary tissue synthesize and secrete the milk proteins alphas1-casein, lactoferrin (Lf), and alpha-lactalhumin during in vitro culture on collagen gels in serum-free medium. Each milk protein is differently regulated by detachment and thickness of the collagen substratum, fetal calf scrum, and prolactin in the medium. Collagen detachment did not modulate lactoferrin secretion but strongly induced casein secretion, with detachment on day 6 (after formation of cell sheets) inducing casein secretion to 3 μg/ml medium, which was 2–3-fold higher than for cells on collagen detached on day 2 (prior to cell spreading to form sheets), and ten-fold higher than for cells grown on collagen not detached. Alpha-lactalbumin secretion was also induced, but only to low levels, in cells grown on detached but not on attached collagen. Cells grown on thin collagen gels secreted lower levels of lactoferrin and casein compared to cells on thick collagen. Lactoferrin but not casein secretion was increased in cells grown in the presence of fetal calf serum. Casein but not lactoferrin secretion was completely dependent on prolactin. Cells grown serum-free on collagen gels detached on day 6 of culture showed a polarized epithelial cell layer with high differentiation evidenced by the apical microvilli, tight junctions, and fat droplets surrounded by casein-containing secretory vesicles. An underlying layer of myoepithelial-like cells was also evident. These studies show for eryopreserved primary bovine mammary cells prepared from lactating mammary tissue the induction of highly differentiated and polarized cell morphology and ultrastructure with concomitant induction of the secretion of casein, lactoferrin. and alpha-lactalbumin in vitro, and that the non-coordinate regulation of milk protein secretion by substratum, prolactin, and serum likely involves alternate routing and control of secretion pathways for casein and lactoferrin.  相似文献   

15.
Characterization of lactoferrin binding by Aeromonas hydrophila.   总被引:3,自引:0,他引:3       下载免费PDF全文
Various lactoferrin preparations (iron-saturated and iron-depleted human milk lactoferrins and bovine milk and colostrum lactoferrins) were bound by Aeromonas hydrophila. Binding was (i) reversible (65% of bound lactoferrin was displaced by unlabeled lactoferrin), (ii) specific (lactoferrin but not other iron-containing glycoproteins such as ferritin, transferrin, hemoglobin, and myoglobin inhibited binding), and (iii) significantly reduced by pepsin and neuraminidase treatment of the bacteria. The glycosidic domains of the lactoferrin molecule seem to be involved in binding since precursor monosaccharides of the lactoferrin oligosaccharides (mannose, fucose, and galactose) and glycoproteins which have homologous glycosidic moieties similar to those of the lactoferrin oligosaccharides (asialofetuin or fetuin) strongly inhibited lactoferrin binding. A. hydrophila also binds transferrin, ferritin, cytochrome c, hemin, and Congo red. However, binding of these iron-containing compounds seems to involve bacterial surface components different from those required for lactoferrin binding. Expression of lactoferrin binding by A. hydrophila was influenced by culture conditions. In addition, there was an inverse relationship between lactoferrin binding and siderophore production by the bacterium.  相似文献   

16.
Various lactoferrin preparations (iron-saturated and iron-depleted human milk lactoferrins and bovine milk and colostrum lactoferrins) were bound by Aeromonas hydrophila. Binding was (i) reversible (65% of bound lactoferrin was displaced by unlabeled lactoferrin), (ii) specific (lactoferrin but not other iron-containing glycoproteins such as ferritin, transferrin, hemoglobin, and myoglobin inhibited binding), and (iii) significantly reduced by pepsin and neuraminidase treatment of the bacteria. The glycosidic domains of the lactoferrin molecule seem to be involved in binding since precursor monosaccharides of the lactoferrin oligosaccharides (mannose, fucose, and galactose) and glycoproteins which have homologous glycosidic moieties similar to those of the lactoferrin oligosaccharides (asialofetuin or fetuin) strongly inhibited lactoferrin binding. A. hydrophila also binds transferrin, ferritin, cytochrome c, hemin, and Congo red. However, binding of these iron-containing compounds seems to involve bacterial surface components different from those required for lactoferrin binding. Expression of lactoferrin binding by A. hydrophila was influenced by culture conditions. In addition, there was an inverse relationship between lactoferrin binding and siderophore production by the bacterium.  相似文献   

17.
Maisi  P.  Mattila  T.  Sandholm  M. 《Acta veterinaria Scandinavica》1984,25(2):297-308
Growth of mastitis pathogenic bacteria was measured in bovine whey samples by a turbidometric microtechnique. Whey from mastitis cows supported growth as compared with whey prepared from normal milk. Blood proteins leak into milk during mastitis. A study was undertaken to analyze which molecules from blood would promote bacterial growth in whey Fractions containing hemoglobin showed a distinct growth-promoting effect. An inadequate iron supply is one of the restricting growth factors for bacteria in milk. By utilizing heme-compounds the pathogens can by-pass the effect of antimicrobial iron-binding present in milk in the form of lactoferrin.  相似文献   

18.
Examination of bovine lactoferrin binding to bifidobacteria   总被引:1,自引:0,他引:1  
In the present study, lactoferrin binding to bifidobacteria and detection of lactoferrin-binding protein in membrane fractions of several bifidobacteria have been demonstrated. This is the first report showing the binding of bovine lactoferrin to four Bifidobacterium spp. (B. infantis, B. breve, B. bifidum, and B. longum) incubated with biotinylated lactoferrin and fluorescein-conjugated avidin and observed under an inverted confocal laser scanning microscope. Fluorescence staining showed lactoferrin binding at the pole of the bacterial cells. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the membrane fraction of Bifidobacterium spp. by far-western blotting technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on the results of this and previously reported studies, we suggest that binding of lactoferrin to Bifidobacterium longum is strain dependent. Published in Russian Prikladnaya Biokhimiya i Mikrobiologiya, 2008, Vol. 44, No. 5, pp. 529–532.  相似文献   

19.
Ye XY  Ng TB 《Life sciences》2000,66(13):1177-1186
A novel glycoprotein designated glycolactin, with a molecular weight of 64 kDa, a sequence hitherto unknown in the literature and capable of inhibiting the hemagglutinating activities of soybean lectin and Ricinus communis agglutinin 120, was isolated from bovine milk. Its lectin-inhibiting activity differed from that of lactoferrin, another milk protein. Like other milk proteins, glycolactin inhibited superoxide formation in vitro. Glycolactin inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC50 of about 31 nM. It exhibited ribonucleolytic (RNase) activity towards yeast transfer RNA with a pH optimum of 7.5, and specific RNase activity towards poly C. The purification protocol of glycolactin involved removal of globulin from the acid whey fraction of bovine milk by precipitation with 1.8 M (NH4)2SO4, and adsorption on the ion exchangers CM-Sepharose and Mono S. Deglycosylation of glycolactin using glycopeptidase F produced only a slight decrease of 4 kDa in the molecular weight of glycolactin.  相似文献   

20.
Abstract The surface hydrophobicity of cells of Staphylococcus aureus strains isolated from bovine mastitis grown on conventional agar and broth media was drastically reduced after incubation with bovine milk. Strains grown in high carbohydrate-high salt media yielded cells with reduced surface hydrophobicity compared to cells grown in conventional media, and adding bovine milk to minimal medium also yielded cells with reduced surface hydrophobicity, as determined by hydrophobic interaction chromatography and the salt aggregation test. Incubation of strains in milk and growth in a medium supplemented with bovine milk also significantly changed bacterial surface charge as determined by free-zone electrophoresis. Strains with high or with decreased adsorptive and aggregating properties did not produce surface capsule or slime. Heat treatment (60° C or 80° C) of the bacterial suspensions did not significantly change their adsorptive and aggregating properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号