首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Mitochondria-enriched fractions of the soil amoeba Acanthamoeba castellanii contained four haemoproteins that in their reduced forms reacted with CO to give photodissociable CO complexes; these were cytochromes a 3, a 614, b- and c-type cytochromes. 2. Non-photodissociable oxygen-containing compounds were formed at temperatures between -130 and -150 degrees C after photodissociation of CO in the presence of 200 microM-O2, 3. Electron transport, indicated by the oxidation of cytochromes a + a3 and cytochrome c, did not occur until the temperature was raised to -80 degrees C.  相似文献   

2.
The purpose of this study was establishing the basic energetic parameters of amoeba Acanthamoeba castellanii mitochondria respiring with malate and their response to oxidative stress caused by hydrogen peroxide in the presence of Fe(2+) ions. It appeared that, contrary to a previous report (Trocha LK, Stobienia O (2007) Acta Biochim Polon 54: 797), H(2)O(2)-treated mitochondria of A. castellanii did not display any substantial impairment. No marked changes in cytochrome pathway activity were found, as in the presence of an inhibitor of alternative oxidase no effects were observed on the rates of uncoupled and phosphorylating respiration and on coupling parameters. Only in the absence of the alternative oxidase inhibitor, non-phosphorylating respiration progressively decreased with increasing concentration of H(2)O(2), while the coupling parameters (respiratory control ratio and ADP/O ratio) slightly improved, which may indicate some inactivation of the alternative oxidase. Moreover, our results show no change in membrane potential, Ca(2+) uptake and accumulation ability, mitochondrial outer membrane integrity and cytochrome c release for 0.5-25 mM H(2)O(2)-treated versus control (H(2)O(2)-untreated) mitochondria. These results indicate that short (5 min) incubation of A. castellanii mitochondria with H(2)O(2) in the presence of Fe(2+) does not damage their basic energetics.  相似文献   

3.
In Acanthamoeba castellanii mitochondria, the apparent affinity values of alternative oxidase for oxygen were much lower than those for cytochrome c oxidase. For unstimulated alternative oxidase, the K(Mox) values were around 4-5 microM both in mitochondria oxidizing 1 mM external NADH or 10 mM succinate. For alternative oxidase fully stimulated by 1 mM GMP, the KK(Mox) values were markedly different when compared to those in the absence of GMP and they varied when different respiratory substrates were oxidized (K(Mox) was around 1.2 microM for succinate and around 11 microM for NADH). Thus, with succinate as a reducing substrate, the activation of alternative oxidase (with GMP) resulted in the oxidation of the ubiquinone pool, and a corresponding decrease in K(Mox). However, when external NADH was oxidized, the ubiquinone pool was further reduced (albeit slightly) with alternative oxidase activation, and the K(Mox) increased dramatically. Thus, the apparent affinity of alternative oxidase for oxygen decreased when the ubiquinone reduction level increased either by changing the activator or the respiratory substrate availability.  相似文献   

4.
1. Mitochondria isolated from the gut-dwelling nematodes Nippostrongylus brasiliensis and Ascaridia galli (muscle and gut + reproductive tissue) were examined for cytochromes, and it was observed that N. brasiliensis and A. galli muscle tissue mitochondria contained a-, b- and c-type cytochromes, but their stoichiometries were quite different (1:2:1.9 and 1:11.4:13.6 respectively); A. galli gut + reproductive-tissue mitochondria, however, only contained b and c cytochromes, in a ratio of 1:0.8. 2. CO difference spectra showed the presence of CO-reacting b-type cytochrome(s) in all three types of mitochondria; the fast-reacting species comprised 30, 44 and 39% of the total in N. brasiliensis, A. galli muscle and A. galli gut + reproductive-tissue mitochondria respectively. 3. Cytochrome aa3 was observed in N. brasiliensis mitochondria and in those from A. galli muscle, but was below the level of detectability (less than 0.005 nmol/mg of protein) for A. galli gut + reproductive-tissue mitochondria. 4. Photochemical action spectra for the reversal of CO inhibition of the endogenous respiration of whole worms (at 24 microM- and 40 microM-O2 respectively for N. brasiliensis and A. galli) gave maxima at 598 and 542-543 nm, corresponding to the alpha- and beta-absorption maxima of cytochrome aa3, and at 567 nm (b-type cytochrome) for both worms. These results suggest that cytochrome aa3 is the major functional oxidase in N. brasiliensis, whereas the CO-reacting b-type cytochrome dominates in A. galli.  相似文献   

5.
The capacity of three B-lymphocyte cell lines to generate superoxide (O2.-) was examined. The Burkitt lymphoma lines P.3HR-1 and Jijoye gave no response to phorbol 12-myristate 13-acetate (PMA) at 100 ng/ml but produced up to 0.35 nmol of O2.-/min per mg of protein when stimulated with 5 micrograms of PMA/ml; the cell line RPMI 1788 produced Nitro Blue Tetrazolium-positive responses to low PMA concentrations and approx. 0.4 nmol of O2.-/min per mg of protein at 5 micrograms of PMA/ml. Each cell line contained approx. 10 pmol of low-potential cytochrome b (cytochrome b-245)/mg of protein. Homogenates of PMA-activated cells gave 10-20-fold greater rates of O2.- produced per mg of protein. The Km for NADPH varied between approx. 250 microM for P3.HR-1 and RPMI 1788 cell lines and 30.5 +/- 6.5 microM for the Jijoye cell line; the Km values for NADH were higher. Determination of intracellular NADPH concentration showed that this might limit the rate of O2.- production since in each cell line it was at or below the Km concentration.  相似文献   

6.
Simultaneous and continuous measurements of changes in CO2 and O2 concentrations in glucose-metabolizing yeast suspensions by mass spectrometry enabled a study of the Pasteur effect (aerobic inhibition of glycolysis) in Saccharomyces uvarum and Schizosaccharomyces pombe. A different control mechanism operates in Candida utilis to give a damped oscillation after the anaerobic-aerobic transition. The apparent Km values for respiration of the three yeasts were in the range 1.3-1.8 microM-O2. The apparent Km values for O2 of the Pasteur effect were 5 and 13 microM for catabolite-repressed and derepressed S. uvarum respectively and 7 microM for Sch. pombe. These results are discussed with respect to currently accepted mechanisms for the control of glycolysis.  相似文献   

7.
The purpose of this study was to examine the effects of oxidative stress caused by hydroperoxide (H(2)O(2)) in the presence of iron ions (Fe(2+)) on mitochondria of the amoeba Acanthamoeba castellanii. We used isolated mitochondria of A. castellanii and exposed them to four levels of H(2)O(2) concentration: 0.5, 5, 15, and 25 mM. We measured basic energetics of mitochondria: oxygen consumption in phosphorylation state (state 3) and resting state (state 4), respiratory coefficient rates (RC), ADP/O ratios, membrane potential (DeltaPsi(m)), ability to accumulate Ca(2+) , and cytochrome c release. Our results show that the increasing concentrations of H(2)O(2) stimulates respiration in states 3 and 4. The highest concentration of H(2)O(2) caused a 3-fold increase in respiration in state 3 compared to the control. Respiratory coefficients and ADP/O ratios decreased with increasing stress conditions. Membrane potential significantly collapsed with increasing hydroperoxide concentration. The ability to accumulate Ca(2+) also decreased with the increasing stress treatment. The lowest stress treatment (0.5 mM H(2)O(2)) significantly decreased oxygen consumption in state 3 and 4, RC, and membrane potential. The ADP/O ratio decreased significantly under 5 mM H(2)O(2) treatment, while Ca(2+) accumulation rate decreased significantly at 15 mM H(2)O(2). We also observed cytochrome c release under increasing stress conditions. However, this release was not linear. These results indicate that as low as 0.5 mM H(2)O(2) with Fe(2+) damage the basic energetics of mitochondria of the unicellular eukaryotic organism Acanthamoeba castellanii.  相似文献   

8.
T A Paget  M Fry    D Lloyd 《The Biochemical journal》1988,256(2):633-639
1. Respiration in the parasitic nematode worm Ascaridia galli was inhibited at O2 concentrations in excess of 255 microM, and an apparent Km,O2 of 174 microM was determined. 2. Mitochondria-enriched fractions isolated from the tissues of A. galli have much lower apparent Km,O2 values (approx. 5 microM). They produce H2O2 in the energized state; higher rates of H2O2 production were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. 3. Antimycin A inhibited respiration in muscle tissue mitochondria by 10%, but had no effect on respiration in gut + reproductive tissue mitochondria; the major portion of respiration in both types of mitochondria could be attributed to an alternative electron-transport pathway. 4. o-Hydroxydiphenyl, an inhibitor of alternative electron-transport pathways, inhibits respiration by 98% and completely inhibits the production of H2O2 in gut-plus-reproductive-tissue mitochondria; respiration and H2O2 production in muscle tissue mitochondria were inhibited by 90 and 86% respectively. 5. Another inhibitor of alternative electron transport, salicylhydroxamic acid, had the same effect as o-hydroxydiphenyl on H2O2 production and respiration in gut-plus-reproductive-tissue mitochondria. However, its effect on muscle tissue mitochondria was complex; a low concentration (0.35 mM) stimulated H2O2 production, whereas 3 mM inhibited respiration by 87% and prevented H2O2 production completely. 6. The similarities between the apparent Km,O2 values for H2O2 production and respiration in muscle mitochondria and in gut-plus-reproductive-tissue mitochondria suggests that the site of H2O2 production on the alternative electron-transport chain is cytochrome 'o'. 7. These results are discussed in relation to potential O2 toxicity in A. galli.  相似文献   

9.
1. Cytochrome alpha 3 in whole-cell suspensions of the fission yeast Schizosaccharomyces pombe reacted in the reduced form with CO to give a photodissociable CO complex with absorption maxima at 429, 543 and 591 nm in CO-liganded reduced-minus-reduced difference spectra. 2. Other CO-bound haemoproteins, cytochromes P-420 and P-450, were not photodissociated under the conditions employed. 3. Measurements of the rates of reassociation of CO with cytochrome alpha 3 after flash photolysis over the temperature range from -101 to -109 degrees C gave a value for Eact. of 28.6 kJ/mol. 4. Between -94 and -106 degrees C, O2 reacted with cytochrome oxidase in intact cells to give an oxygenated intermediate (compound A). 5. At -70 degrees C compound A was converted into a second spectrally distinct intermediate (compound B). 6. Electron transport, indicated by the oxidation of cytochromes alpha + alpha 3 and cytochrome c, did not occur until the temperature was raised to -50 degrees C. 7. At room temperature cytochfome oxidase was oxidized to 50% of its steady-state concentration by 0.35 microM-O2.  相似文献   

10.
T A Paget  M Fry    D Lloyd 《The Biochemical journal》1987,243(2):589-595
1. Mitochondria from the parasitic nematode worm Nippostrongylus brasiliensis produce H2O2 in the energized state; higher rates of H2O2 production were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. 2. Antimycin A inhibits respiration and H2O2 production by 70 and 65% respectively; the residual activities can be attributed to alternative electron-transport pathway(s). 3. o-Hydroxydiphenyl and 1,3,5-trihydroxybenzene, inhibitors of alternative electron transport, inhibit respiration by 37% and H2O2 production by 26%. 4. Another inhibitor of alternative electron transport, salicylhydroxamic acid, shows a complex mode of action; low concentrations (less than 0.5 mM) stimulate respiration and H2O2 production, whereas 2 mM-salicylhydroxamic acid inhibited respiration by 35% and stopped H2O2 production completely. 5. O2 thresholds were observed for the inhibition of respiration at O2 concentrations greater than 57.7 microM and inhibition of H2O2 production (greater than 20.5 microM-O2); apparent Km values for oxygen were 5.5 microM and 3.0 microM respectively. 6. In the presence of antimycin A the O2-inhibition thresholds and apparent Km values for O2 of respiration and H2O2 production matched closely, suggesting that the alternative oxidase is a likely site of H2O2 production. 7. These results are discussed in relation to O2 toxicity to N. brasiliensis.  相似文献   

11.
The cytochromes of Acanthamoeba castellanii.   总被引:4,自引:4,他引:0       下载免费PDF全文
1. Low-temperature difference spectra of gradient-purified mitochondria of Acanthamoeba castellanii reveal the presence of cytochromes b-555, b-562 and c-549, with a-type cytochromes having a broad asymmetrical maximum at 602 nm; these components were also observed in specta of whole cells. 2. The a-type cytochromes are unusual in that they have split Soret absorption maxima (at 442 and 449 nm) and an uncharacteristic CO difference spectrum. 3. CO difference spectra of whole cells and 'microsomal' membranes show large amounts of cytochrome P-420 compared with cytochrome P-450. 4. Difference spectra in the presence of cyanide indicate the presence of an a-type cytochrome and two cyanide-reacting components, one of which may be cytochrome a3. 5. Whole-cell respiration in a N2/O2 (19:1) atmosphere was decreased by 50%, suggesting the presence of a low-affinity oxidase. This lowered respiration is inhibited by 50% by CO, and the inhibition is partially light-reversible; photochemical action spectra suggest that cytochrome a3 contributes to this release of inhibition. Other CO-reacting oxidases are also present. 6. The results are discussed with the view that cytochrome a3 is present in A. castellanii, but its identification in CO difference spectra is obscured by other component(s).  相似文献   

12.
The mitochondria isolated from the ciliate protozoon Tetrahymena pyriformis carry an oxidative phosphorylation with P/O ratio of 2 for succinate oxidation and P/O ratio of 3 for the oxidation of the NAD-linked substrates. The respiration is more than 90% inhibited with 1 mM cyanide while antimycin A and rotenone inhibit at concentrations of 1000-fold higher than those effective in mammalian mitochondria. Using a combination of spectral studies and potentiometric titrations, the components of the respiratory chain were identified and characterized with respect to the values of their half-reduction potentials. In the cytochrome bc1 region of the chain a cytochrome c was present with an Em7.2 of 0.225 V and two components with absorption maxima at 560 nm and the half-reduction potential values of -0.065 and -0.15 V at pH 7.2. The cytochrome with the more positive half-reduction potential was identified as the analogue of the cytochrome(s) b present in mitochondria of higher organisms, while the cytochrome with the more negative half-reduction potential was tentatively identified as cytochrome o. In addition ubiquinone was present at a concentration of approx. 4 nmol per mg mitochondrial protein. In the spectral region where cytochromes a absorb at least three cytochromes were found. A cytochrome with an absorption maximum at 593 nm and a midpoint potential of -0.085 V at pH 7.2 was identified as cytochrome a1. The absorption change at 615-640 nm, attributed usually to cytochrome a2, was resolved into two components with Em7,2 values of 0,245 and 0.345 V. It is concluded that the terminal oxidase in Tetrahymena pyriformis mitochondria is cytochrome a2 which in its two component structure resembles cytochrome aa3.  相似文献   

13.
Steady-state H+/O stoichiometry of liver mitochondria.   总被引:2,自引:1,他引:1       下载免费PDF全文
We have measured the H+/O stoichiometry of rat liver mitochondria respiring in a steady-state, using a novel method. This involves measuring the initial rate of H+ back-flow into mitochondria after respiratory inhibition, with the assumption that this is equal to the steady-state H+-ejection rate. Division by the steady-state O2-consumption rate yields the H+/O ratio. The H+/O values obtained were: 8.3 +/- 1.0 (mean +/- S.E.M.) for 3-hydroxybutyrate: 8.2 +/- 0.7 for glutamate plus malate; 6.0 +/- 0.2 for succinate; 4.1 +/- 0.3 for ascorbate/tetramethylphenylenediamine and 3.0 +/- 0.1 for ascorbate/ferrocyanide. These values correspond to H+/O stoichiometries for electron flow to oxygen from NAD+-linked substrates, succinate and cytochrome c of 8, 6 and 2 (charge/O ratio = 4) respectively.  相似文献   

14.
Resveratrol protection on the main functions of purified rat brain mitochondria submitted to anoxia-reoxygenation was investigated. Resveratrol (<0.1 microM) reversed partly (23.3%) the respiratory control ratio (RCR) decrease by protecting both states 3 and 4. This effect was both observed when resveratrol was added before anoxia or reoxygenation. Resveratrol fully inhibited the release of cytochrome c in a concentration-dependent manner and significantly decreased the superoxide anion (O2(0-)) production at a concentration of 1 nM. The mitochondrial membranes damaged after the anoxia-reoxygenation were partly protected (about 70%) by resveratrol at 0.1 microM. The oxygen consumption of mitochondria in presence of NADH and cytochrome c was significantly inhibited by resveratrol with a low EC50 of 18.34 pM. Resveratrol inhibited the CCCP-induced uncoupling from about 20%. The effects of resveratrol on oxidative phosphorylation parameters were also investigated in rats after pretreatment (0.4, 2 and 10 mg/kg/day) for one week. After the isolation of brain mitochondria, the RCR was significantly less decreased in the resveratrol group compared to the control group. These results showed that resveratrol could preserve the mitochondrial functions with at least three mechanisms: antioxidant properties, action on complex III and a membrane stabilizing effect.  相似文献   

15.
Mitochondria of amoeba Acanthamoeba castellanii in addition to the conventional cytochrome pathway possess, like plant mitochondria, a cyanide-resistant alternative quinol oxidase. In mitochondria isolated from amoeba batch culture grown temporarily at low temperature (6 degrees C), higher respiration was accompanied by lower coupling parameters as compared to control culture (grown at 28 degrees C). In the presence of benzohydroxamate, respiratory rates and coupling parameters were similar in both types of mitochondria indicating that growth in cold conditions did not disturb the cytochrome pathway. Increased contribution of alternative oxidase in total mitochondrial respiration in low-temperature-grown amoeba cells was confirmed by calculation of its contribution using ADP/O measurements. Furthermore, in mitochondria from low-temperature- grown cells the content of the alternative oxidase was increased and correlated with the increase in the unstimulated and GMP-stimulated cyanide-resistant respiratory activity. A possible physiological role of higher activity of alternative oxidase as response to growth at a low temperature in unicellular organisms, such as amoeba, is discussed.  相似文献   

16.
Mercuric ion, a well-known nephrotoxin, promotes oxidative tissue damage to kidney cells. One principal toxic action of Hg(II) is the disruption of mitochondrial functions, although the exact significance of this effect with regard to Hg(II) toxicity is poorly understood. In studies of the effects of Hg(II) on superoxide (O2-) and hydrogen peroxide (H2O2) production by rat kidney mitochondria, Hg(II) (1-6 microM), in the presence of antimycin A, caused a concentration-dependent increase (up to fivefold) in mitochondrial H2O2 production but an apparent decrease in mitochondrial O2- production. Hg(II) also inhibited O(2-)-dependent cytochrome c reduction (IC50 approximately 2-3 microM) when O2- was produced from xanthine oxidase. In contrast, Hg(I) did not react with O2- in either system, suggesting little involvement of Hg(I) in the apparent dismutation of O2- by Hg(II). Hg(II) also inhibited the reactions of KO2 (i.e., O2-) with hemin or horseradish peroxidase dissolved in dimethyl sulfoxide (DMSO). Finally, a combination of Hg(II) and KO2 in DMSO resulted in a stable UV absorbance spectrum [currently assigned Hg(II)-peroxide] distinct from either Hg(II) or KO2. These results suggest that Hg(II), despite possessing little redox activity, enhances the rate of O2- dismutation, leading to increased production of H2O2 by renal mitochondria. This property of Hg(II) may contribute to the oxidative tissue-damaging properties of mercury compounds.  相似文献   

17.
1. Room-temperature (18 degrees C) CO difference spectra of mitochondrial fractions from the amoeba Acanthamoeba castellanii reveal the presence of at least four CO-reacting haemoproteins. As well as cytochrome a3, other components reacting with CO are: (i) a c-type cytochrome; (ii) a b-type cytochrome; and (iii) another a-type cytochrome. 2. The same components can be identified in low-temperature photodissociation experiments with intact cells or mitochondria. 3. The time of exposure to CO and the nature of the reductant are both important in identifying all the components present, in that the b-type cytochrome is more readily distinguished after longer exposure to CO and more of the c-type cytochrome is detectable when NADH is the reductant 4. Treatment of mitochondria with ultrasound releases two components, identifiable in low-temperature difference spectra as a c-type and a b-type cytochrome; only the latter appears to have any reaction with CO, and the CO-reacting c-type cytochrome is retained in submitochondrial particles. 5. The complexity of the CO-reacting haemoproteins in this organism is compared with the simpler systems found in other eukaryotic organisms.  相似文献   

18.
Reactivity of mitochondria and peroxisomes to diaminobenzidine was investigated in Tetrahymena pyriformis and in wild-type and cytochrome oxidase-deficient Paramecium aurelia. Wild-type and cytochrome oxidase-deficient Paramecium gave positive mitochondrial reactions in the absence of added H2O2, and the deposits were enhanced by the addition of H2O2, whereas Tetrahymena gave positive mitochondrial reactions only upon addition of H2O2. These results are discussed in the light of the current ideas concerning the mechanism of staining by diaminobenzidine. Peroxisome-like organelles which react positively to diaminobenzidine, the reaction being partially inhibited by aminotriazole, were identified in both protozoa.  相似文献   

19.
3-Nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase (SDH) at complex II of the mitochondrial electron transport chain induces cellular energy deficit and oxidative stress-related neurotoxicity. In the present study, we identified the site of reactive oxygen species production in mitochondria. 3-NPA increased O2- generation in mitochondria respiring on the complex I substrates pyruvate+malate, an effect fully inhibited by rotenone. Antimycin A increased O2- production in the presence of complex I and/or II substrates. Addition of 3-NPA markedly increased antimycin A-induced O2- production by mitochondria incubated with complex I substrates, but 3-NPA inhibited O2- formation driven with the complex II substrate succinate. At 0.6 microM, myxothiazol inhibits complex III, but only partially decreases complex I activity, and allowed 3-NPA-induced O2- formation; however, at 40 microM myxothiazol (which completely inhibits both complexes I and III) eliminated O2- production from mitochondria respiring via complex I substrates. These results indicate that in the presence of 3-NPA, mitochondria generate O2- from a site between the ubiquinol pool and the 3-NPA block in the respiratory complex II.  相似文献   

20.
Oxygen dependence of mitochondrial nitric oxide synthase activity   总被引:3,自引:0,他引:3  
The effect of O(2) concentration on mitochondrial nitric oxide synthase (mtNOS) activity and on O(2)(-) production was determined in rat liver, brain, and kidney submitochondrial membranes. The K(mO(2)) for mtNOS were 40, 73, and 37 microM O(2) and the V(max) were 0.51, 0.49, and 0.42 nmol NO/minmg protein for liver, brain, and kidney mitochondria, respectively. The rates of O(2)(-) production, 0.5-12.8 nmol O(2)(-)/minmg protein, depended on O(2) concentration up to 1.1mM O(2). Intramitochondrial NO, O(2)(-), and ONOO(-) steady-state concentrations were calculated for the physiological level of 20 microM O(2); they were 20-39 nM NO, 0.17-0.33 pM O(2)(-), and 0.6-2.2 nM ONOO(-) for the three organs. These levels establish O(2)/NO ratios of 513-1000 that correspond to physiological inhibitions of cytochrome oxidase by intramitochondrial NO of 16-25%. The production of NO by mtNOS appears as a regulatory process that modulates mitochondrial oxygen uptake and cellular energy production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号