首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The domestication of the Eurasian grape (Vitis vinifera ssp. sativa) from its wild ancestor (Vitis vinifera ssp. sylvestris) has long been claimed to have occurred in Transcaucasia where its greatest genetic diversity is found and where very early archaeological evidence, including grape pips and artefacts of a 'wine culture', have been excavated. Whether from Transcaucasia or the nearby Taurus or Zagros Mountains, it is hypothesized that this wine culture spread southwards and eventually westwards around the Mediterranean basin, together with the transplantation of cultivated grape cuttings. However, the existence of morphological differentiation between cultivars from eastern and western ends of the modern distribution of the Eurasian grape suggests the existence of different genetic contribution from local sylvestris populations or multilocal selection and domestication of sylvestris genotypes. To tackle this issue, we analysed chlorotype variation and distribution in 1201 samples of sylvestris and sativa genotypes from the whole area of the species' distribution and studied their genetic relationships. The results suggest the existence of at least two important origins for the cultivated germplasm, one in the Near East and another in the western Mediterranean region, the latter of which gave rise to many of the current Western European cultivars. Indeed, over 70% of the Iberian Peninsula cultivars display chlorotypes that are only compatible with their having derived from western sylvestris populations.  相似文献   

2.
We have used nuclear and chloroplast molecular markers to genotype cultivated and wild accessions of Vitis vinifera L. from Tunisia and assess their genetic relationships. Fifty-five distinct genotypes were identified among 80 cultivated accessions, including 18 genotypic groups containing between 2 and 5 accessions per group. They could represent a total of 60 distinct cultivars owing to berry colour variation found within identical genotype groups. Most of the 55 genotypes represent unique table grape genotypes except for one of them that was found identical to the genotype of table grape cultivar Rosseti. Hybridization among cultivars as well as self pollinations seems to have played an important role in their origin since several groups of closely related cultivars were observed. Furthermore, a parentage analysis showed a high probability for a parent hybrid relationship within two groups of three cultivars. No strong genetic similarities were found between cultivated and wild samples indicating that the cultivated accessions do not derive from local Vitis vinifera L. populations but could have been introduced from other regions in historic times.  相似文献   

3.
The wild grapevine, Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi, considered as the ancestor of the cultivated grapevine, is native from Eurasia. In Spain, natural populations of V. vinifera ssp. sylvestris can still be found along river banks. In this work, we have performed a wide search of wild grapevine populations in Spain and characterized the amount and distribution of their genetic diversity using 25 nuclear SSR loci. We have also analysed the possible coexistence in the natural habitat of wild grapevines with naturalized grapevine cultivars and rootstocks. In this way, phenotypic and genetic analyses identified 19% of the collected samples as derived from cultivated genotypes, being either naturalized cultivars or hybrid genotypes derived from spontaneous crosses between wild and cultivated grapevines. The genetic diversity of wild grapevine populations was similar than that observed in the cultivated group. The molecular analysis showed that cultivated germplasm and wild germplasm are genetically divergent with low level of introgression. Using a model‐based approach implemented in the software structure , we identified four genetic groups, with two of them fundamentally represented among cultivated genotypes and two among wild accessions. The analyses of genetic relationships between wild and cultivated grapevines could suggest a genetic contribution of wild accessions from Spain to current Western cultivars.  相似文献   

4.
Q Zhang  G P Yang  X Dai  J Z Sun 《Génome》1994,37(4):631-638
This study was conducted to address some of the issues concerning the possible significance of Tibet in the origin and evolution of cultivated barley. A total of 1757 barley accessions from Tibet, including 1496 entries of Hordeum vulgare ssp. vulgare (HV), 229 entries of the six-rowed wild barley H. vulgare ssp. agriocrithon (HA), and 32 entries of the two-rowed wild barley H. vulgare ssp. spontaneum (HS), were assayed for allozymes at four esterase loci. A subsample of 491 accessions was surveyed for spacer-length polymorphism at two ribosomal DNA loci. Genetic variation is extensive in these barley groups, and the amount of genetic diversity in cultivated barley of this region is comparable with that of cultivated barley worldwide. The level of genetic variation of HA is significantly lower than the other two barley groups, and there is also substantial heterogeneity in the level of polymorphism among different agrigeographical subregions. However, little genetic differentiation was detected among the three barley groups (HV, HA, and HS), as well as among different agrigeographical subregions. Comparison of the results from this and previous studies indicated a strong differentiation between Oriental and Occidental barley, thus favoring the hypothesis of a diphyletic origin of cultivated barley.  相似文献   

5.
Historical information and archaeological and palaeobotanical findings point Georgia, in the South Caucasus, as a cradle for grapevine (Vitis vinifera L.) domestication from its wild form (V. vinifera silvestris Beck.) and subsequent selection and development of varieties with characters suitable for human consumption. The hypothesis of Georgia being a center of domestication, combined with its distance from western countries and the importance of its viticulture and wine production, make Georgian grape germplasm particularly interesting to be investigated under the genetic point of view. Twenty nuclear microsatellite loci were used to genotype 112 Georgian grapevine accessions (V. vinifera sativa Beck.) from germplasm collections and 18 from spontaneous growing plants (V. vinifera silvestris Beck.) found in wild conditions and to compare them to a large international cultivar collection in France. Data analysis shows that Georgian grapevine germplasm has maintained distinctive traits despite arrival of international, foreign varieties and still conserve characteristics of local breeding linked to traditional wine production regions of the country. Results have identified alleles, overall loci, well represented in the Georgian germplasm (cultivated and wild) and absent or poorly represented in other countries, highlighting uniqueness and originality of traits of this viticulture. Moreover, the search for relationships between Georgian and foreign viticulture has evidenced few interesting cases linking the Georgian varieties with Western European ones and with neighboring Caucasian countries, helping to identify the real place of origin in some doubtful cases. In addition, populations or sparse individuals of wild grapevine still preserved in the Georgian natural environments present smaller genetic distances with local cultivars than in other European regions. Principal component analysis (PCA) has also identified special overlapping of the wild compartment with some cultivated varieties. This work provides a highly significant new contribution to applied aspects of Georgian grapevine genetic resources management and use. Uniqueness of the Georgian cultivated grapevine gene pool together with its close relatedness with the wild compartment makes this country a good candidate to address questions regarding domestication and grapevine genetic resource conservation.  相似文献   

6.
Summary Fifty-six accessions of cultivated and wild sorghum were surveyed for genetic diversity using 50 low-copy-number nuclear DNA sequence probes to detect restriction fragment length polymorphisms (RFLPs). These probes revealed greater genetic diversity in wild sorghum than in cultivated sorghum, including a larger number of alleles per locus and a greater portion of polymorphic loci in wild sorghum. In comparison to previously published isozyme analyses of the same accessions, RFLP analysis reveals a greater number of alleles per locus. Furthermore, many RFLP alleles have frequencies between 0.25–0.75, while the vast majority of isozyme alleles are either rare (< 0.25) or near fixation (> 0.75). Correlations between genetic and geographic distances among the accessions were stronger when calculated with RFLP than with isozyme data. Systematic relationships revealed by nuclear and chloroplast restriction site analysis indicate that cultivated sorghum is derived from the wild ssp. arundinaceum. The portion of the wild gene pool most genetically similar to the cultivars is from central-northeastern Africa. Previous published data also suggested that this is most likely the principal area of domestication of sorghum. Introgression between wild and cultivated sorghum was inferred from disconcordant relationships shown by nuclear and chloroplast DNA markers. Introgression apparently occurs infrequently enough that the crop and its wild relatives maintain distinct genetic constitutions.  相似文献   

7.
应用微卫星标记研究西藏野生大麦的遗传多样性   总被引:9,自引:0,他引:9  
以西藏不同地区的106份野生大麦为材料,其中包括50份野生二棱大麦(HS),27份野生瓶形大麦(HL)和29份野生六棱大麦(HA),用Liu等(1996)发表的SSR连锁图的每个连锁群的两个臂的不同位置上选取3~5个共30个SSR标记,研究了西藏3类野生大麦的遗传多样性。结果表明,这3类野生大麦在遗传组成及等位变异频率分布上存在着明显的遗传分化。在总样本中,共检测到229个等位变异,平均每个SSR位点检测到7.6个等位变异,其中70个为这3类野生大麦间共同的等位变异,等位变异数在这3类野生大麦间有明显的差异,亚种问的遗传多样性明显高于亚种内的遗传多样性。其遗传多样性大小顺序为HS〉HL〉HA。聚类分析表明,野生二棱大麦、野生六棱大麦分别聚在不同的两类,而野生瓶形大麦中各有约50%的材料分别聚在这两类。根据本研究及前人研究结果,我们认为中国栽培大麦是从野生二棱大麦经野生瓶形大麦向野生六棱大麦进化的。该结果支持了栽培大麦起源的“野生二棱大麦单系起源论”的观点。  相似文献   

8.
Hybridization between cultivated species and their wild relatives is now widely considered to be common. In the Beta vulgaris complex, the sugar beet seed multiplication areas have been the scene of inadvertent pollination of sugar beet seed bearers by wild ruderal pollen donors, generating a weedy form of beet which infests sugar beet fields in European countries. Up to now, investigations of evolutionary dynamics of genetic diversity within the B. vulgaris complex were addressed using few genetical markers and few accessions. In this study, we tackled this issue using a panel of complementary markers: five nuclear microsatellite loci, four mitochondrial minisatellite loci and one chloroplastic PCR-RFLP marker. We sampled 1,640 individuals that illustrate the actual distribution of inland ruderal beets of South Western France, weed beets and wild sea beets of northern France as well as the diversity of 35 contemporary European diploid cultivars. Nuclear genetic diversity in weed beets appeared to be as high as those of ruderal beets and sea beets, whereas the narrowness of cultivar accessions was confirmed. This genetic bottleneck in cultivars is even more important in the cytoplasmic genome as only one haplotype was found among all sugar beet cultivars. The large majority of weed beet populations also presented this unique cytoplasmic haplotype, as expected owing to their maternal cultivated origin. Nonetheless, various cytoplasmic haplotypes were found within three populations of weed beets, implying wild-to-weed seed flows. Finally, our findings gave new insights into the genetical relationships between the components of the B. vulgaris complex: (1) we found a very strong genetic divergence between wild sea beet and other relatives, which was unexpected given the recent evolutionary history and the full cross-compatibility of all taxa and (2) we definitely confirmed that the classification into cultivated, wild, ruderal and weed forms according to their geographical location, phenotype or their domesticated status is clearly in accordance with genetic clustering despite the very recent domestication process of sugar beet. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Fusarium head blight (FHB) is a threat to barley (Hordeum vulgare L.) production in many parts of the world. A number of barley accessions with partial resistance have been reported and used in mapping experiments to identify quantitative trait loci (QTL) associated with FHB resistance. Here, we present a set of barley germplasm that exhibits FHB resistance identified through screening a global collection of 23,255 wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) accessions. Seventy-eight accessions were classified as resistant or moderately resistant. The collection of FHB resistant accessions consists of 5, 27, 46 of winter, wild and spring barley, respectively. The population structure and genetic relationships of the germplasm were investigated with 1,727 Diversity Array Technology (DArT) markers. Multiple clustering analyses suggest the presence of four subpopulations. Within cultivated barley, substructure is largely centered on spike morphology and growth habit. Analysis of molecular variance indicated highly significant genetic variance among clusters and within clusters, suggesting that the FHB resistant sources have broad genetic diversity. The haplotype diversity was characterized with DArT markers associated with the four FHB QTLs on chromosome 2H bin8, 10 and 13 and 6H bin7. In general, the wild barley accessions had distinct haplotypes from those of cultivated barley. The haplotype of the resistant source Chevron was the most prevalent in all four QTL regions, followed by those of the resistant sources Fredrickson and CIho4196. These resistant QTL haplotypes were rare in the susceptible cultivars and accessions grown in the upper Midwest USA. Some two- and six-rowed accessions were identified with high FHB resistance, but contained distinct haplotypes at FHB QTLs from known resistance sources. These germplasm warrant further genetic studies and possible incorporation into barley breeding programs.  相似文献   

10.
The genetic diversity of 255 taro (Colocasia esculenta) accessions from Vietnam, Thailand, Malaysia, Indonesia, the Philippines, Papua New Guinea and Vanuatu was studied using AFLPs. Three AFLP primer combinations generated a total of 465 scorable amplification products. The 255 accessions were grouped according to their country of origin, to their ploidy level (diploid or triploid) and to their habitat—cultivated or wild. Gene diversity within these groups and the genetic distance between these groups were computed. Dendrograms were constructed using UPGMA cluster analysis. In each country, the gene diversity within the groups of wild genotypes was the highest compared to the diploid and triploid cultivars groups. The highest gene diversity was observed for the wild group from Thailand (0.19), the lowest for the diploid cultivars group from Thailand (0.007). In Malaysia there was hardly any difference between the gene diversity of the cultivars and wild groups, 0.07 and 0.08, respectively. The genetic distances between the diploid cultivars groups ranges from 0.02 to 0.10, with the distance between the diploid accessions from Thailand and Malaysia being the highest. The genetic distances between the wild groups range from 0.05 to 0.07. First, a dendrogram was constructed with only the diploids cultivars from all countries. The accessions formed clusters largely according to the country from which they originated. Two major groups of clusters were revealed, one group assembling accessions from Asian countries and the other assembling accessions from the Pacific. Surprisingly, the group of diploid cultivars from Thailand clustered among the Pacific countries. Secondly, a dendrogram was constructed with diploid cultivated, triploid cultivated and wild accessions. Again the division of the accessions into an Asian and a Pacific gene pool is obvious. The presence of two gene pools for cultivated diploid taro has major implications for the breeding and conservation of germplasm.  相似文献   

11.
One hundred and six accessions of wild barley collected from Tibet, China, including 50 entries of the two-rowed wild barley Hordeum vulgare ssp. spontaneum (HS), 29 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon (HA), and 27 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon var. lagunculiforme (HL), were analyzed using 30 SSR markers selected from the seven barley linkage groups for studying genetic diversity and evolutionary relationship of the three subspecies of Tibetan wild barley to cultivated barley in China. Over the 30 genetic loci that were studied, 229 alleles were identified among the 106 accessions, of which 70 were common alleles. H. vulgare ssp. spontaneum possesses about thrice more private alleles (2.83 alleles/locus) than HS (0.93 alleles/locus), whereas almost no private alleles were detected in HL. The genetic diversity among-subspecies is much higher than that within-subspecies. Generally, the genetic diversity among the three subspecies is of the order HS > HL > HA. Phylogenetic analysis of the 106 accessions showed that all the accessions of HS and HA was clustered in their own groups, whereas the 27 accessions of HL were separated into two groups (14 entries with group HS and the rest with group HA). This indicated that HL was an intermediate form between HS and HA. Based on this study and previous works, we suggested that Chinese cultivated barley might evolve from HS via HL to HA.  相似文献   

12.
The genetic variation within and between wild apple samples (Malus sylvestris) and cultivated apple trees was investigated with amplified fragment length polymorphisms (AFLP) and microsatellite markers to develop a conservation genetics programme for the endangered wild apple in Belgium. In total, 76 putative wild apples (originating from Belgium and Germany), six presumed hybrids and 39 cultivars were typed at 12 simple sequence repeats (SSR) and 139 amplified fragment length polymorphism (AFLP) loci. Principal co-ordinate analysis and a model-based clustering method classified the apples into three major gene pools: wild Malus sylvestris genotypes, edible cultivars and ornamental cultivars. All presumed hybrids and two individuals (one Belgian, one German) sampled as M. sylvestris were assigned completely to the edible cultivar gene pool, revealing that cultivated genotypes are present in the wild. However, gene flow between wild and cultivated gene pools is shown to be almost absent, with only three genotypes that showed evidence of admixture between the wild and edible cultivar gene pools. Wild apples sampled in Belgium and Germany constitute gene pools that are clearly differentiated from cultivars and although some geographical pattern of genetic differentiation among wild apple populations exists, most variation is concentrated within samples. Concordant conclusions were obtained from AFLP and SSR markers, which showed highly significant correlations in both among-genotypes and among-samples genetic distances.  相似文献   

13.
The association between allelic diversity and ecogeographical variables was studied in natural populations of wild emmer wheat [ Triticum turgidum ssp. dicoccoides (Körn.) Thell.], the tetraploid progenitor of cultivated wheat. Patterns of allelic diversity in 54 microsatellite loci were analyzed in a collection of 145 wild emmer wheat accessions representing 25 populations that were sampled across naturally occurring aridity gradient in Israel and surrounding regions. The obtained results revealed that 56% of the genetic variation resided among accessions within populations, while only 44% of the variation resided between populations. An unweighted pair-group method analysis (UPGMA) tree constructed based on the microsatellite allelic diversity divided the 25 populations into six major groups. Several groups were comprised of populations that were collected in ecologically similar but geographically remote habitats. Furthermore, genetic differentiation between populations was independent of the geographical distances. An interesting evolutionary phenomenon is highlighted by the unimodal relationship between allelic diversity and annual rainfall ( r  = 0.74, P  < 0.0002), indicating higher allelic diversity in populations originated from habitats with intermediate environmental stress (i.e. rainfall 350–550 mm year−1). These results show for the first time that the 'intermediate-disturbance hypothesis', explaining biological diversity at the ecosystem level, also dominates the genetic diversity within a single species, the lowest hierarchical element of the biological diversity.  相似文献   

14.
The use of the RAPD technique was investigated on a set of 73 genotypes of 18 wild grape species native to China, and one interspecific hybrid, seven Vitis vinifera L. cultivars, one rootstock cultivar and one strain of V. riparia L. Genetic diversity among these grapes was investigated based on RAPD analysis. The screening of 280 decamer oligonucleotides allowed the selection of 20 primers used for the analysis. A total of 191 RAPD markers were produced from the 20 selected primers. Relationships among the 83 clones or accessions based on their genetic distances were clustered using unweighted pair-group method arithmetic average (UPGMA) analysis in a dendrogram. Twenty-two clusters which fortunately adapted to 22 grape species level were clearly resolved on the dendrogram. The 18 wild grape species native to China were grouped into ten subclusters. The largest distance was found between V. riparia L., V. vinifera L., interspecific hybrid ( V. vinifera L.× V. larbrusca L.) and the wild grapes native to China. Among the wild grapes native to China, the largest distance was found between V. hancockii Hance and the other wild species. V. qinlingensis P.C.He was the second. Large genetic variation occurred among the different flower-type clones in one species.  相似文献   

15.
It has been difficult to infer the genetic history of avocado breeding, owing to the role of hybridization in the origin of contemporary avocado cultivars. To address this difficulty, we used the model-based clustering program, STRUCTURE, and nucleotide polymorphism in 5960 bp of sequence from 4 nuclear loci to examine population structure in 21 wild avocado accessions. The origins of 33 cultivars were inferred relative to the wild sample. Nucleotide sequence diversity in domesticated avocados ranged between 80% and 90% of that observed for the same loci in wild avocado, depending on the diversity statistic used for comparison. Substantial genetic differentiation among 3 geographic groups of wild germplasm corresponded to the classically defined horticultural races of avocado. Previously undetected genetic differentiation was revealed in wild populations from Central Mexico, where 2 subpopulations were distinguished based on elevation and latitude.  相似文献   

16.
To examine the genetic diversity of Vitis vinifera L., growing in the region near the Caspian Sea of Azerbaijan Republic, nuclear genomes of 31 cultivated and 34 wild grapevine accessions were studied at population and individual levels using five ISSR primers. In total, 51 fragments were amplified, of which 45 were found to be polymorphic. A high level of polymorphism was revealed (the mean PPF and PIC values constituted 87.69% and 0.94, respectively). High values of the EMR, MI, and RP indices showed the effectiveness of the application of ISSR primers and the possibility of their use in further investigations in this direction. Cluster analysis based on Nei’s genetic distance values showed that all genotypes could be grouped into seven main clusters. Furthermore, no differences between the wild and cultivated grape wine accessions were revealed. For instance, there was no distinct distribution of the accessions according to their geographical localization. On the basis of the PIC values, the group of cultivars from Absheron Peninsula was distinguished by the highest polymorphism level (PIC = 0.36). Natural populations from the Guba and Shabran regions were characterized by a relatively low polymorphism level (PIC = 0.31 and PIC = 0.28, respectively), and a wild population from Nabran demonstrated the lowest polymorphism level (PIC = 0.25). The data obtained confirmed paleontological and historical data of different periods and provided the supposition that Azerbaijan was the center of diversity of V. vinifera L. In addition, our data indicate that Azerbaijan grape landraces originated from local wild forms.  相似文献   

17.
Chang  Yuansheng  He  Ping  Wang  Haibo  Li  Huifeng  Wang  Sen  Li  Linguang 《Plant Molecular Biology Reporter》2019,37(1-2):63-73

The Taiyi mountainous region of Shandong province in eastern China has an abundance of wild Malus species. We evaluated the genetic diversity of 88 Malus accessions (45 Asian apple cultivars, 10 American apple cultivars, 12 European apple cultivars, 19 Chinese wild apples, and two apple cultivars with unknown origins) based on single-nucleotide polymorphism (SNP) markers. A total of 38,364 SNPs were obtained with an average of 2256 SNPs per chromosome. The average of the polymorphism information content (PIC), gene diversity, and allele frequency for SNPs was 0.268, 0.306, and 0.364, respectively. A circular phylogenetic tree constructed based on SNP data revealed that the 88 Malus accessions could be divided into three groups. However, a population structure analysis suggested the 88 Malus accessions could be divided into four groups. A principal component analysis (PCA) revealed some population stratification. The first three PCs accounted for 41.62% of the population-wide SNP variation, with PC1 accounting for 33.9%. Moreover, the kinship values of the 88 Malus accessions ranged from 0 to 2.36, with 96.42% of the kinship values between 0 and 0.2. A phylogenetic tree and a PCA indicated the Chinese wild apples widely distributed among the cultivated apples had a diverse genetic background. Characterizing the genetic relationships between cultivated apples and Chinese wild apples is essential for increasing the genetic diversity of the germplasms used by apple breeders.

  相似文献   

18.
Members of the primary gene pool of the chickpea, including 38 accessions of Cicer arietinum, six of C. reticulatum and four of C. echinospermum grown in India were investigated using 100 SSR markers to analyze their genetic structure, diversity and relationships. We found considerable diversity, with a mean of 4.8 alleles per locus (ranging from 2 to 11); polymorphic information content ranged from 0.040 to 0.803, with a mean of 0.536. Most of the diversity was confined to the wild species, which had higher values of polymorphic information content, gene diversity and heterozygosity than the cultivated species, suggesting a narrow genetic base for cultivated chickpea. An unrooted neighbor-joining tree, principal coordinate analysis and population structure analysis revealed differentiation between the cultivated accessions and the wild species; three cultivated accessions were in an intermediate position, demonstrating introgression within the cultivated group. Better understanding of the structure, diversity and relationships within and among the members of this primary gene pool will contribute to more efficient identification, conservation and utilization of chickpea germplasm for allele mining, association genetics, mapping and cloning gene(s) and applied breeding to widen the genetic base of this cultivated species, for the development of elite lines with superior yield and improved adaptation to diverse environments.  相似文献   

19.
Cultivated squash (Cucurbita argyrosperma ssp. argyrosperma and C. moschata) are important in the Mexican traditional agroecosystem. They are typically cultivated within maize fields where adjacent populations of a wild, close relative, C. argyrosperma ssp. sororia, occur. Consequently, there are ample opportunities for gene flow between domesticated and free-living Cucurbita populations. We used allozymes to examine genetic variation and gene flow among these three Cucurbita taxa in the state of Jalisco in Western Mexico. Twelve polymorphic allozyme loci were used to calculate genetic diversity for 16 populations of Cucurbita. We found high levels of genetic variation: polymorphism of 0.96, mean allelic diversity of 2.08, average expected heterozygosity 0.407, and little differentiation among conspecific populations (D = 0.081; F(ST) = 0.087; N(e)m = 5.22). These findings indicate that Cucurbita possess a high pollen dispersal potential, a somewhat surprising result considering they have specialist pollinators. Unweighted pair group method with arithmetic means (UPGMA) analysis of allozymes suggests the existence of at least two distinct groups of populations, one consisting of both subspecies of C. argyrosperma and another consisting of C. moschata.  相似文献   

20.
Eight microsatellite loci were characterized within two cultivated beet (Beta vulgaris ssp. vulgaris) accessions and one accession of the wild progenitor of domesticated sugar beet, Beta vulgaris ssp. maritima. Allele diversity was high, yielding two to 11 alleles per locus. Polymorphism information content (PIC) values obtained for these eight loci where also high and indicate the highly informative nature of the microsatellites presented here. These described markers add to a small set of publicly available microsatellite markers for beet and will be instrumental in identifying patterns of genetic diversity and origins of domestication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号