首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Bryan M. Turner 《Chromosoma》1982,87(3):345-357
A mouse monoclonal IgM antibody against the core histone H2B has been shown, by indirect immunofluorescence, to stain metaphase chromosomes from a variety of cultured cell types. Experiments carried out with human HeLa cells showed that the intensity of staining varied along the length of chromosome arms giving in some cases a rudimentary banded staining pattern. Considerable variation in staining intensity was noted between individual chromosomes and between different metaphase spreads. It was noted that chromosomes having a more swollen appearance stained more intensely than those with a more compact structure, which were often unstained. Preincubation of unfixed metaphase chromosomes in buffered salt solutions virtually eliminated the cell to cell and chromosome to chromosome variation in staining, even when no visible effect on chromosome morphology was caused by such treatment. It is concluded that the determinant recognised by antibody HBC-7 is ubiquitous but is inaccessible in some chromosomes or chromosome regions. Digestion of purified chromatin (primarily interphase) with DNAase 1 or micrococcal nuclease resulted in a several-fold increase in the binding of antibody HBC-7 measured by solid-phase radioimmunoassay. This increase was abolished by subsequent treatment with trypsin, which suggests that the antigenic determinant recognised by antibody HBC-7 lies in the trypsin-sensitive N-terminal region of nucleosomal H2B. As the cationic N-terminal regions of the core histones are involved in DNA binding, it is likely that the accessibility of the determinant recognised by antibody HBC-7 is influenced by the relationship between the core histones and their associated DNA.  相似文献   

2.
Unfixed metaphase chromosome preparations from human lymphocyte cultures were immunofluorescently labelled using antibodies to defined histone epitopes. Both mouse monoclonal antibody HBC-7, raised against the N-terminal region of H2B, and rabbit serum R5/12, which recognizes H4 acetylated at Lys-12, gave non-uniform labelling patterns, whereas control antibodies against total histone fractions H4 and H1 produced homogeneous fluorescence. HBC-7 bound approximately uniformly to the bulk of the chromosomes, but the major heterochromatic domains of chromosomes 1, 9, 15, 16 and the Y showed significantly brighter fluorescence. Serum R5/12 indicated an overall reduction in acetylation of H4 in metaphase chromosomes compared with interphase nuclei, although some specific chromosomal locations had considerably elevated acetylation levels. Acetylation levels in the major heterochromatic domains appeared extremely low. To investigate further the differences noted in heterochromatin labelling, metaphases from cultures grown in the presence of various agents known to induce undercondensation of the major heterochromatic domains were similarly immunolabelled. Decondensed heterochromatin no longer exhibited higher than normal immunofluorescence levels with HBC-7. The higher resolution afforded by stretching the centromeric heterochromatin of chromosomes 1, 9 and 16 confirmed the low level of H4 acetylation in these domains. We consider the implications of these observations in relation to chromatin conformation and activity.by W.C. Earnshaw  相似文献   

3.
Antibodies specific for acetylated isoforms of histone H4 have been used to compare acetylation of this histone in interphase and metaphase cells. Two rabbit antisera (R5 and R6) were used, each specific for H4 molecules acetylated at one of the four possible acetylation sites, namely Lys-5 (R6) and Lys-12 (R5). Both antisera bound preferentially to the more-acetylated H4 isoforms (H4Ac2-4). To test for continued H4 acetylation in metaphase chromosomes. Chinese hamster ovary cells were blocked in metaphase and treated for one hour with the deacetylase inhibitor sodium butyrate. Isolated chromosomes were assayed for H4 acetylation by antibody labeling and flow cytometry. H4 acetylation was increased several fold by this brief butyrate treatment. The increase was in direct proportion to DNA content, with no evidence for exceptionally high- or low-labeling chromosomes. The results demonstrate that a cycle of H4 acetylation and deacetylation continues within metaphase chromosomes. Immunofluorescence microscopy showed labeling to be distributed throughout the chromosome, but with variable intensity. Western blotting and immunostaining with R5 and R6 showed a net reduction in labeling of H4 from metaphase cells, with major reductions in the more-acetylated isoforms H4Ac3-4. In contrast, labeling of H4Ac1 was reduced to a lesser extent (R6) or increased (R5). This increase indicates more frequent use of the acetylation site at lysine 12 in H4Ac1 from metaphase cells.  相似文献   

4.
CNAP1 (hCAP-D2/Eg7) is an essential component of the human condensin complex required for mitotic chromosome condensation. This conserved complex contains a structural maintenance of chromosomes (SMC) family protein heterodimer and three non-SMC subunits. The mechanism underlying condensin targeting to mitotic chromosomes and the role played by the individual condensin components, particularly the non-SMC subunits, are not well understood. We report here characterization of the non-SMC condensin component CNAP1. CNAP1 contains two separate domains required for its stable incorporation into the complex. We found that the carboxyl terminus of CNAP1 possesses a mitotic chromosome-targeting domain that does not require the other condensin components. The same region also contains a functional bipartite nuclear localization signal. A mutant CNAP1 missing this domain, although still incorporated into condensin, was unable to associate with mitotic chromosomes. Successful chromosome targeting of deletion mutants correlated with their ability to directly bind to histones H1 and H3 in vitro. The H3 interaction appears to be mediated through the H3 histone tail, and a subfragment containing the targeting domain was found to interact with histone H3 in vivo. Thus, the CNAP1 C-terminal region defines a novel histone-binding domain that is responsible for targeting CNAP1, and possibly condensin, to mitotic chromosomes.  相似文献   

5.
Prothymosin (ProT alpha) is an acidic nuclear protein, widely distributed in mammalian cells, whose expression is regulated by c-myc and linked to cell proliferation. ProT alpha interacts with histone H1 via its acidic domain, and its overexpression provokes the unfolding of chromatin fibers. Here we show that incubation of human native metaphase chromosomes with ProT alpha induces their extensive unravelling suggesting a function of this protein in chromosome decondensation.  相似文献   

6.
Acceptor proteins for (ADP-ribose)n in the HeLa S3 cell cycle   总被引:3,自引:0,他引:3  
The acceptor proteins for (ADP-ribose)n were investigated by using nuclei or chromosomes isolated from specific phases of the cell cycle of HeLa S3 cells. Analysis of HMG proteins and histone H1 by acetic acid/urea polyacrylamide gel electrophoresis demonstrated that the (ADP-ribosyl)n-ation of HMG 14 and 17 and histone H1 increased by 12- and 5-fold, respectively, in the metaphase chromosomes as compared with that in the G1 phase cell nuclei. The degree of (ADP-ribosyl)n-ation of these proteins in the S phase cell nuclei was as low as that in G1 phase cell nuclei. In the G2 phase cell nuclei, the degrees of (ADP-ribosyl)n-ation of HMG 14 and 17 and histone H1 were about 5- and 2-fold greater, respectively, as compared with that in the G1 phase cell nuclei. The (ADP-ribosyl)n-ation of HMG 1 and 2 was constant through the cell cycle except for a slight decrease in the S phase. The data may imply that the (ADP-ribosyl)n-ation of HMG 14 and 17 and histone H1 is linked to chromatin structural changes in mitosis.  相似文献   

7.
Immunofluorescent labelling demonstrates that human metaphase chromosomes contain hyperacetylated histone H4. With the exception of the inactive X chromosome in female cells, where the bulk of histone H4 is under-acetylated, H4 hyperacetylation is non-uniformly distributed along the chromosomes and clustered in cytologically resolvable chromatin domains that correspond, in general, with the R-bands of conventional staining. The strongest immunolabelling is often found in T-bands, the subset of intense R-bands having the highest GC content. The majority of mapped genes also occurs in R-band regions, with the highest gene density in T-bands. These observations are consistent with a model in which hyperacetylation of histone H4 marks the position of potentially active gene sequences on metaphase chromosomes. Since acetylation is maintained during mitosis, progeny cells receive an imprint of the histone H4 acetylation pattern that was present on the parental chromosomes before cell division. Histone acetylation could provide a mechanism for propagating cell memory, defined as the maintenance of committed states of gene expression through cell lineages.  相似文献   

8.
To test whether gross changes in chromatin structure occur during the cell cycle, we compared HeLa mitotic metaphase chromosomes and interphase nuclei by low angle x-ray diffraction. Interphase nuclei and metaphase chromosomes differ only in the 30-40-nm packing reflection, but not in the higher angle part of the x-ray diffraction pattern. Our interpretation of these results is that the transition to metaphase affects only the packing of chromatin fibers and not, to the resolution of our method, the internal structure of nucleosomes or the pattern of nucleosome packing within chromatin fibers. In particular, phosphorylation of histones H1 and H3 at mitosis does not affect chromatin fiber structure, since the same x-ray results are obtained whether or not histone dephosphorylation is prevented by isolating metaphase chromosomes in the presence of 5,5'-dithiobis(2- nitrobenzoate) or low concentrations of p-chloromercuriphenylsulfonate (ClHgPhSO3). We also compared metaphase chromosomes isolated by several different published procedures, and found that the isolation procedure can significantly affect the x-ray diffraction pattern. High concentrations of ClHgPhSO3 can also profoundly affect the pattern.  相似文献   

9.
The effects of butyrate upon the extents of phosphorylation of histones H1 and H1(0) during cell-cycle progression have been investigated. Chinese hamster (line CHO) cells were synchronized in early S phase and released into medium containing 0 or 15 mM butyrate to resume cell-cycle traverse into G1 of the next cell cycle. Cells were also mechanically selected from monolayer cultures grown in the presence of colcemid and 0 or 15 mM butyrate to obtain greater than 98% pure populations of metaphase cells. Although cell cycle progression is altered by butyrate, electrophoretic patterns of histones H1, H1(0), H3, and H4 indicate that butyrate has little, if any, effect on the extents of H1 and H1(0) phosphorylation during the cell cycle or the mitotic-specific phosphorylation of histone H3. Butyrate does, however, inhibit removal of extraordinary levels of histone H4 acetylation (hyperacetylation) during metaphase, and it appears to cause an increase in the content of H1(0) in chromatin during the S or G2 phases of the cell cycle.  相似文献   

10.
When oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with the Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine 1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during the meiotic maturation of pig oocytes and 2) the effects of protein phosphatase 1/2A (PP1/ PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase, and histone H3 kinase in this process. The phosphorylation of histone H3 (Ser10) was first detected in the clump of condensed chromosomes at the diakinesis stage and was maintained until metaphase II. The kinase assay showed that histone H3 kinase activity was low in oocytes at the germinal vesicle stage (GV) and increased at the diakinesis stage and that high activity was maintained until metaphase II. Treatment of GV-oocytes with okadaic acid (OA) or calyculin-A (CL-A), the PP1/PP2A inhibitors, induced rapid chromosome condensation with histone H3 (Ser10) phosphorylation after 2 h. Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and the MEK inhibitor U0126, neither Cdc2 kinase nor MAP kinase were activated and no oocytes underwent germinal vesicle breakdown (GVBD), although histone H3 kinase was still activated and the chromosomes condensed with histone H3 (Ser10) phosphorylation. These results suggest that the phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Furthermore, the chromosome condensation is correlated with histone H3 kinase activity but not with Cdc2 kinase and MAP kinase activities.  相似文献   

11.
Histones have been extracted from isolated metaphase chromosomes prepared by the method of Wray and Sutbblefield [Exp. Cell Res 59, 469-478 (1970)] and by a Nonidet P-40 detergent procedure based on the method of Wigler and Axel [Nucleic Acids Res. 3, 1463-1471 (1976)]. Analysis of the densitometer profiles of long polyacrylamide gels shows that the mitotic phosphorylations of histone H1 (H1M) and histone H3 are extensively depleted during chromosome isolation. These data indicate that CHO metaphase chromosomes prepared by standard methodologies do not represent in vivo chromosomes with respect to their histone phosphorylations; therefore, current chemical and structural studies of isolated metaphase chromosomes may require further clarification.  相似文献   

12.
Monoclonal antibodies binding to different domains of nucleolin have been used to localize nucleolin in tissue culture cells ofXenopus laevis.The monoclonal antibody b6-6E7 binds to an epitope in the N-terminal domain, which contains arrays of phosphorylation consensus sites. This monoclonal antibody binds to nucleolin of oocytes and of eggs with high affinity. In contrast, the monoclonal antibody Nu-1H6 binds poorly to the modified forms of nucleolin arising during meiosis and mitosis. In interphase cells, monoclonal antibody b6-6E7 preferentially stains the periphery of the nucleoli, where most of the rRNA accumulates. Staining by monoclonal antibody Nu-1H6 complements this pattern by staining mainly the center of the nucleoli. The epitope of monoclonal antibody Nu-1H6 is within the central domain of nucleolin, which contains the first two RNA binding domains. RNase treatment of cells results in loss of nucleolin from nucleoli. In mitotic cells, both monoclonal antibodies decorate the surface of condensing chromosomes in prophase. The periphery of the condensed chromosomes in metaphase and anaphase is preferentially stained by monoclonal antibody b6-6E7.  相似文献   

13.
14.
15.
16.
Calreticulin (CRT) is a multifunctional Ca(2+)-binding protein that mainly functions in the endoplasmic reticulum as a molecular chaperone for newly synthesized proteins. Recently we reported the protein composition of human metaphase chromosomes (Uchiyama et al., 2004), which included CRT. Here we describe new characteristics of CRT in vitro as well as its localization on the surface of metaphase chromosomes in vivo. CRT was detected in the chromosomal fraction by Western blotting and its binding partners were identified as core and linker histones by ligand overlay assay. Surface plasmon resonance sensor analyses revealed that CRT is bound to chromatin fibers. Moreover, we found that CRT has both supercoiling activity, which assists core histone assembly into chromatin fibers, and binding ability to histone H2A/H2B dimers and histone H3/H4 tetramers. Unlike the chromosome scaffold proteins, indirect immunofluorescent staining revealed that CRT is located on the surface of metaphase chromosomes. These results suggest that CRT plays a role which involves chromatin dynamics on the surface of mitotic chromosomes.  相似文献   

17.
The DNA double-strand breaks (DSBs) are considered to be the most relevant lesions for the deleterious effects of ionizing radiation exposure. The discovery that the induction of DSBs is rapidly followed by the phosphorylation of H2AX histone at Ser-139, favoring repair protein recruitment or access, opens the possibility for a wide range of research. This phosphorylated histone, named gamma-H2AX, has been shown to form foci in interphase nuclei as well as megabase chromatin domains surrounding the DNA lesion on chromosomes. Using detection of gamma-H2AX on germ cell mitotic chromosomes 2 h after gamma-irradiation, we studied radiation-induced DSBs during the G(2)/M phase of the cell cycle. We show that 1) non-irradiated neonatal germ cells express gamma-H2AX with variable patterns at metaphase, 2) gamma-irradiation induces foci whose number increases in a dose-dependent manner, 3) some foci correspond to visible chromatid breaks or exchanges, 4) sticky chromosomes characterizing cell radiation exposure during mitosis are a consequence of DSBs, and 5) gamma-H2AX remains localized at the sites of the lesions even after end-joining has taken place. This suggests that completion of DSB repair does not necessarily imply disappearance of gamma-H2AX.  相似文献   

18.
19.
To learn more about holocentric chromosome structure and function, we generated a monoclonal antibody (mAb), 6C4, that recognizes the poleward face of mitotic chromosomes in Caenorhabditis elegans. Early in mitosis, mAb 6C4 stains dots throughout the nucleoplasm. Later in prophase, mAb 6C4 stains structures on opposing faces of chromosomes which orient towards the centrosomes at metaphase. Colocalization with an antibody against a centromeric histone H3-like protein and the MPM-2 antibody, which identifies a kinetochore-associated phosphoepitope present in a variety of organisms, shows that the mAb 6C4 staining is present adjacent to the centromere.Expression screening using mAb 6C4 identified a protein in C. elegans that we named HCP-1 (for holocentric protein 1). We also identified a second protein from the C. elegans genome sequence database, HCP-2, that is 54% similar to HCP-1. When expression of HCP-1 is reduced by RNA interference (RNAi), staining with mAb 6C4 is eliminated, indicating that hcp-1 encodes the major mAb 6C4 antigen. RNAi with hcp-1 and hcp-2 together results in aberrant anaphases and embryonic arrest at approximately 100 cells with different amounts of DNA in individual nuclei. These results suggest that HCP-1 is a centromere-associated protein that is involved in the fidelity of chromosome segregation.  相似文献   

20.
The duration of M-phase is largely determined by the time necessary for the formation of a functional metaphase spindle and the correct alignment of all chromosomes on the metaphase plate. The spindle assembly checkpoint prevents the exit from M-phase before the proper alignment of all chromosomes on a metaphase plate in many cell types. In the present paper we show that the first mitotic M-phase of the mouse embryo lasts about 119 min, while the second embryonic M-phase lasts only about 70 min. Histone H1 kinase is activated rapidly during nuclear envelope breakdown in both mitoses. Its maximum, however, is followed by a plateau only during the first mitosis. In the second mitosis, the inactivation of histone H1 kinase activity follows its maximum directly. Histone H1 kinase is more stable in the cytoplasts obtained from mouse embryos during the first embryonic M-phase than during the second one. The stability of histone H1 kinase is greatly increased by the presence of the mitotic apparatus in both M-phases. The mitotic spindle assembly during the first and the second mitoses differs and the first metaphase spindle is stabilised during the period of maximum histone H1 kinase activity. These data show that an unknown developmentally regulated mechanism controls the duration of the two first mitoses in the mouse embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号