首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoelectric materials can convert waste heat into electricity, potentially improving the efficiency of energy usage in both industry and everyday life. Unfortunately, known good thermoelectric materials often are comprised of elements that are in low abundance and require careful doping and complex synthesis procedures. Here, we report dimensionless thermoelectric figure of merit near unity in compounds of the form Cu12xMxSb4S13, where M is a transition metal such as Zn or Fe, for wide ranges of x. The compounds investigated here span the range of compositions of the natural mineral family of tetrahedrites, the most widespread sulfosalts on Earth, and we further show that the natural mineral itself can be used directly as an inexpensive source thermoelectric material. Thermoelectrics comprised of earth‐abundant elements will pave the way to many new, low cost thermoelectric energy generation opportunities.  相似文献   

2.
Precise control of carrier concentration in both bulk and thin‐film materials is crucial for many solid‐state devices, including photovoltaic cells, superconductors, and high mobility transistors. For applications that span a wide temperature range (thermoelectric power generation being a prime example) the optimal carrier concentration varies as a function of temperature. This work presents a modified modulation doping method to engineer the temperature dependence of the carrier concentration by incorporating a nanosize secondary phase that controls the temperature‐dependent doping in the bulk matrix. This study demonstrates this technique by de‐doping the heavily defect‐doped degenerate semiconductor GeTe, thereby enhancing its average power factor by 100% at low temperatures, with no deterioration at high temperatures. This can be a general method to improve the average thermoelectric performance of many other materials.  相似文献   

3.
High‐performance GeTe‐based thermoelectrics have been recently attracting growing research interest. Here, an overview is presented of the structural and electronic band characteristics of GeTe. Intrinsically, compared to low‐temperature rhombohedral GeTe, the high‐symmetry and high‐temperature cubic GeTe has a low energy offset between L and Σ points of the valence band, the reduced direct bandgap and phonon group velocity, and as a result, high thermoelectric performance. Moreover, their thermoelectric performance can be effectively enhanced through either carrier concentration optimization, band structure engineering (bandgap reduction, band degeneracy, and resonant state engineering), or restrained lattice thermal conductivity (phonon velocity reduction or phonon scattering). Consequently, the dimensionless figure of merit, ZT values, of GeTe‐based thermoelectric materials can be higher than 2. The mechanical and thermal stabilities of GeTe‐based thermoelectrics are highlighted, and it is found that they are suitable for practical thermoelectric applications except for their high cost. Finally, it is recognized that the performance of GeTe‐based materials can be further enhanced through synergistic effects. Additionally, proper material selection and module design can further boost the energy conversion efficiency of GeTe‐based thermoelectrics.  相似文献   

4.
Application of zinc‐blende‐related chalcogenide absorbers such as CdTe and Cu(In,Ga)Se2 (CIGSe) has enabled remarkable advancement in laboratory‐ and commercial‐scale thin‐film photovoltaic performance; however concerns remain regarding the toxicity (CdTe) and scarcity (CIGSe/CdTe) of the constituent elements. Recently, kesterite‐based Cu2ZnSn(S,Se)4 (CZTSSe) materials have emerged as attractive non‐toxic and earth‐abundant absorber candidates. Despite the similarities between CZTSSe and CIGSe/CdTe, the record power conversion efficiency of CZTSSe solar cells (12.6%) remains significantly lower than that of CIGSe (22.6%) and CdTe (22.1%) devices, with the performance gap primarily being attributed to cationic disordering and associated band tailing. To capture the promise of kesterite‐like materials as prospective “drop‐in” earth‐abundant replacements for closely‐related CIGSe, current research has focused on several key directions to control disorder, including: (i) examination of the interaction between processing conditions and atomic site disorder, (ii) isoelectronic cation substitution to introduce ionic size mismatch, and (iii) structural diversification beyond the zinc‐blende‐type coordination environment. In this review, recent efforts targeting accurate identification and engineering of anti‐site disorder in kesterite‐based CZTSSe are considered. Lessons learned from CZTSSe are applied to other complex chalcogenide semiconductors, in an effort to develop promising pathways to avoid anti‐site disordering and associated band tailing in future high‐performance earth‐abundant photovoltaic technologies.  相似文献   

5.
High thermoelectric performance of mechanically robust p‐type Bi2Te3‐based materials prepared by melt spinning (MS) combined with plasma‐activated sintering (PAS) method can be obtained with small, laboratory grown samples. However, large‐size samples are required for commercial applications. Here, large‐size p‐type Bi2Te3‐based ingots with 30, 40, and 60 mm in diameter are produced by MS‐PAS, and the influence of temperature distribution during the sintering process on the composition and thermoelectric properties is systematically studied for the first time. Room‐temperature scanning Seebeck Microprobe results show that the large‐size ingot is inhomogeneous, induced by ellipsoidal‐shape‐distributed temperature field during the sintering process, which is verified by finite‐element analysis. Although some temperature differences are unavoidable in the sintering process, homogeneity and mechanical properties of ingots can be improved by appropriately extending the sintering time and design of graphite die. Samples cut from ingots attain the peak ZT value of 1.15 at 373 K, about 17% enhancement over commercial zone‐melted samples. Moreover, the compressive and bending strengths are improved by several times as well. It is important to ascertain that large‐size p‐type Bi2Te3‐based thermoelectric materials with high thermoelectric performance can be fabricated by MS‐PAS.  相似文献   

6.
As commercial interest in flexible power‐conversion devices increases, the demand for high‐performance alternatives to brittle inorganic thermoelectric (TE) materials is growing. As an alternative, we propose a rationally designed graphene/polymer/inorganic nanocrystal free‐standing paper with high TE performance, high flexibility, and mechanical/chemical durability. The ternary hybrid system of the graphene/polymer/inorganic nanocrystal includes two hetero­junctions that induce double‐carrier filtering, which significantly increases the electrical conductivity without a major decrease in the thermopower. The ternary hybrid shows a power factor of 143 μW m?1 K?1 at 300 K, which is one to two orders of magnitude higher than those of single‐ or binary‐component materials. In addition, with five hybrid papers and polyethyleneimine (PEI)‐doped single‐walled carbon nanotubes (SWCNTs) as the p‐type and n‐type TE units, respectively, a maximum power density of 650 nW cm?2 at a temperature difference of 50 K can be obtained. The strategy proposed here can improve the performance of flexible TE materials by introducing more heterojunctions and optimizing carrier transfer at those junctions, and shows great potential for the preparation of flexible or wearable power‐conversion devices.  相似文献   

7.
Noting the steadily worsening problem of depleted fossil fuel sources, alternate energy sources have become increasingly important; these include thermoelectrics, which may use waste heat to generate electricity. To be economically viable, the thermoelectric figure‐of‐merit, zT, which is related to the energy conversion efficiency, needs to be in excess of unity (zT > 1). Tl4SnTe3 and Tl4PbTe3 were reported to attain a thermoelectric figure‐of‐merit zT max = 0.74 and 0.71, respectively, at 673 K. Here, the thermoelectric properties of both materials are presented as a function of x in Tl10–x Sn x Te6 and Tl10–x Pb x Te6, with x varying between 1.9 and 2.05, culminating in zT values in excess of 1.2. These materials are charge balanced when x = 2, according to (Tl+)8(Sn2+)2(Te2?)6 and (Tl+)8(Pb2+)2(Te2?)6 (or: (Tl+)4Pb2+(Te2?)3). Increasing x causes an increase in valence electrons, and thus a decrease in the dominating p‐type charge carriers. Larger x values occur with a smaller electrical conductivity and a larger Seebeck coefficient. In each case, the lattice thermal conductivity remains under 0.5 W m?1 K?1, resulting in several samples attaining the desired zT max > 1. The highest values thus far are exhibited by Tl8.05Sn1.95Te6 with zT = 1.26 and Tl8.10Pb1.90Te6 with zT = 1.46 around 685 K.  相似文献   

8.
Sodium superionic conductor (NASICON) cathodes are attractive for Na‐ion battery applications as they exhibit both high structural stability and high sodium ion mobility. Herein, a comprehensive study is presented on the structural and electrochemical properties of the NASICON‐Na3+yV2?yMny(PO4)3 (0 ≤ y ≤ 1) series. A phase miscibility gap is observed at y = 0.5, defining two solid solution domains with low and high Mn contents. Although, members of each of these domains Na3.25V1.75Mn0.25(PO4)3 and Na3.75V1.25Mn0.75(PO4)3 reversibly exchange sodium ions with high structural integrity, the activity of the Mn3+/Mn2+ redox couple is found to be absent and present in the former and latter candidate, respectively. Galvanostatic cycling and rate studies reveal higher capacity and rate capability for the Na3.75V1.25Mn0.75(PO4)3 cathode (100 and 89 mA h g?1 at 1C and 5C rate, respectively) in the Na3+yV2?yMny(PO4)3 series. Such a remarkable performance is attributed to optimum bottleneck size (≈5 Å2) and modulated V‐ and Mn‐redox centers as deduced from Rietveld analysis and DFT calculations, respectively. This study shows how important it is to manipulate electronic and crystal structures to achieve high‐performance NASICON cathodes.  相似文献   

9.
The development of effective and stable hole transporting materials (HTMs) is very important for achieving high‐performance planar perovskite solar cells (PSCs). Herein, copper salts (cuprous thiocyanate (CuSCN) or cuprous iodide (CuI)) doped 2,2,7,7‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9‐spirobifluorene (spiro‐OMeTAD) based on a solution processing as the HTM in PSCs is demonstrated. The incorporation of CuSCN (or CuI) realizes a p‐type doping with efficient charge transfer complex, which results in improved film conductivity and hole mobility in spiro‐OMeTAD:CuSCN (or CuI) composite films. As a result, the PCE is largely improved from 14.82% to 18.02% due to obvious enhancements in the cell parameters of short‐circuit current density and fill factor. Besides the HTM role, the composite film can suppress the film aggregation and crystallization of spiro‐OMeTAD films with reduced pinholes and voids, which slows down the perovskite decomposition by avoiding the moisture infiltration to some extent. The finding in this work provides a simple method to improve the efficiency and stability of planar perovskite solar cells.  相似文献   

10.
Bismuth telluride based thermoelectric materials have been commercialized for a wide range of applications in power generation and refrigeration. However, the poor machinability and susceptibility to brittle fracturing of commercial ingots often impose significant limitations on the manufacturing process and durability of thermoelectric devices. In this study, melt spinning combined with a plasma‐activated sintering (MS‐PAS) method is employed for commercial p‐type zone‐melted (ZM) ingots of Bi0.5Sb1.5Te3. This fast synthesis approach achieves hierarchical structures and in‐situ nanoscale precipitates, resulting in the simultaneous improvement of the thermoelectric performance and the mechanical properties. Benefitting from a strong suppression of the lattice thermal conductivity, a peak ZT of 1.22 is achieved at 340 K in MS‐PAS synthesized structures, representing about a 40% enhancement over that of ZM ingots. Moreover, MS‐PAS specimens with hierarchical structures exhibit superior machinability and mechanical properties with an almost 30% enhancement in their fracture toughness, combined with an eightfold and a factor of six increase in the compressive and flexural strength, respectively. Accompanied by an excellent thermal stability up to 200 °C for the MS‐PAS synthesized samples, the MS‐PAS technique demonstrates great potential for mass production and large‐scale applications of Bi2Te3 related thermoelectrics.  相似文献   

11.
Half‐Heusler (HH) compounds have gained ever‐increasing popularity as promising high temperature thermoelectric materials. High figure of merit zT of ≈1.0 above 1000 K has recently been realized for both n‐type and p‐type HH compounds, demonstrating the realistic prospect of these high temperature compounds for high efficiency power generation. Here, recent progress in advanced fabrication techniques and the intrinsic atomic disorders in HH compounds, which are linked to the understanding of the electrical transport, is discussed. Thermoelectric transport features of n‐type ZrNiSn‐based HH alloys are particularly emphasized, which is beneficial to further improving thermoelectric performance and comprehensively understanding the underlying mechanisms in HH thermoelectric materials. The rational design and realization of new high performance p‐type Fe(V,Nb)Sb‐based HH compounds are also demonstrated. The outlook for future research directions of HH thermoelectric materials is also discussed.  相似文献   

12.
13.
AgPbmSbTem+2 (abbreviated as LAST) has received tremendous attention as a promising thermoelectric material at medium temperature. It can be synthesized by a simple process combining mechanical alloying (MA) and spark plasma sintering (SPS). This work reveals that the thermoelectric figure of merit (ZT value) of LAST can be increased by 50%, benefiting from enhanced electrical conductivity and thermopower due to refined grains and from nanostructuring realized by repeating the milling and SPS processes. This modified process and further compositional optimization enables ZT values of the LAST alloys up to 1.54 at 723 K. This supports the potential of the LAST alloy as a promising medium‐temperature thermoelectric material and reveals the validity of ZT enhancement by a simple microstructural refining and nanostructuring method.  相似文献   

14.
A power conversion efficiency (PCE) as high as 19.7% is achieved using a novel, low‐cost, dopant‐free hole transport material (HTM) in mixed‐ion solution‐processed perovskite solar cells (PSCs). Following a rational molecular design strategy, arylamine‐substituted copper(II) phthalocyanine (CuPc) derivatives are selected as HTMs, reaching the highest PCE ever reported for PSCs employing dopant‐free HTMs. The intrinsic thermal and chemical properties of dopant‐free CuPcs result in PSCs with a long‐term stability outperforming that of the benchmark doped 2,2′,7,7′‐Tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐Spirobifluorene (Spiro‐OMeTAD)‐based devices. The combination of molecular modeling, synthesis, and full experimental characterization sheds light on the nanostructure and molecular aggregation of arylamine‐substituted CuPc compounds, providing a link between molecular structure and device properties. These results reveal the potential of engineering CuPc derivatives as dopant‐free HTMs to fabricate cost‐effective and highly efficient PSCs with long‐term stability, and pave the way to their commercial‐scale manufacturing. More generally, this case demonstrates how an integrated approach based on rational design and computational modeling can guide and anticipate the synthesis of new classes of materials to achieve specific functions in complex device structures.  相似文献   

15.
Earth‐abundant Cu2BaSnS4 (CBTS) thin films exhibit a wide bandgap of 2.04–2.07 eV, a high absorption coefficient > 104 cm?1, and a p‐type conductivity, suitable as a top‐cell absorber in tandem solar cell devices. In this work, sputtered oxygenated CdS (CdS:O) buffer layers are demonstrated to create a good p–n diode with CBTS and enable high open‐circuit voltages of 0.9–1.1 V by minimizing interface recombination. The best power conversion efficiency of 2.03% is reached under AM 1.5G illumination based on the configuration of fluorine‐doped SnO2 (back contact)/CBTS/CdS:O/CdS/ZnO/aluminum‐doped ZnO (front contact).  相似文献   

16.
Lead‐free tin sulfide (SnS), with an analogous structure to SnSe, has attracted increasing attention because of its theoretically predicted high thermoelectric performance. In practice, however, polycrystalline SnS performs rather poorly as a result of its low power factor. In this work, bulk sodium (Na)‐doped SnS single crystals are synthesized using a modified Bridgman method and a detailed transport evaluation is conducted. The highest zT value of ≈1.1 is reached at 870 K in a 2 at% Na‐doped SnS single crystal along the b‐axis direction, in which high power factors (2.0 mW m?1 K?2 at room temperature) are realized. These high power factors are attributed to the high mobility associated with the single crystalline nature of the samples as well as to the enhanced carrier concentration achieved through Na doping. An effective single parabolic band model coupled with first‐principles calculations is used to provide theoretical insight into the electronic transport properties. This work demonstrates that SnS‐based single crystals composed of earth‐abundant, low‐cost, and nontoxic chemical elements can exhibit high thermoelectric performance and thus hold potential for application in the area of waste heat recovery.  相似文献   

17.
Half‐Heusler (HH) compounds are important high temperature thermoelectric (TE) materials and have attracted considerable attention in the recent years. High figure of merit zT values of 0.8 to 1.0 have been obtained in n‐type ZrNiSn‐based HH compounds. However, developing high performance p‐type HH compounds are still a big challenge. Here, it is shown that a new p‐type HH alloy with a high band degeneracy of 8, Ti‐doped FeV0.6Nb0.4Sb, can achieve a high zT of 0.8, which is one of the highest reported values in the p‐type HH compounds. Although the band effective mass of this system is found to be high, which may lead to a low mobility, its low deformation potential and low alloy scattering potential both contribute to a reasonably high mobility. The enhanced phonon scattering by alloying leads to a reduced lattice thermal conductivity. The achieved high zT demonstrates that the p‐type Ti doped FeV0.6Nb0.4Sb HH alloys are promising as TE materials and offer an excellent TE performance match with n‐type ones for high temperature power generation.  相似文献   

18.
Micro‐supercapacitors (MSCs) as a new class of energy storage devices have attracted great attention due to their unique merits. However, the narrow operating voltage, slow frequency response, and relatively low energy density of MSCs are still insufficient. Therefore, an effective strategy to improve their electrochemical performance by innovating upon the design from various aspects remains a huge challenge. Here, surface and structural engineering by downsizing to quantum dot scale, doping heteroatoms, creating more structural defects, and introducing rich functional groups to two dimensional (2D) materials is employed to tailor their physicochemical properties. The resulting nitrogen‐doped graphene quantum dots (N‐GQDs) and molybdenum disulfide quantum dots (MoS2‐QDs) show outstanding electrochemical performance as negative and positive electrode materials, respectively. Importantly, the obtained N‐GQDs//MoS2‐QDs asymmetric MSCs device exhibits a large operating voltage up to 1.5 V (far exceeding that of most reported MSCs), an ultrafast frequency response (with a short time constant of 0.087 ms), a high energy density of 0.55 mWh cm?3, and long‐term cycling stability. This work not only provides a novel concept for the design of MSCs with enhanced performance but also may have broad application in other energy storage and conversion devices based on QDs materials.  相似文献   

19.
Spinel‐layered composites, where a high‐voltage spinel is incorporated in a layered lithium‐rich (Li‐rich) cathode material with a nominal composition x{0.6Li2MnO3 · 0.4[LiCo0.333Mn0.333Ni0.333]O2} · (1 – x) Li[Ni0.5Mn1.5]O4 (x = 0, 0.3, 0.5, 0.7, 1) are synthesized via a hydroxide assisted coprecipitation route to generate high‐energy, high‐power cathode materials for Li‐ion batteries. X‐ray diffraction patterns and the cyclic voltammetry investigations confirm the presence of both the parent components in the composites. The electrochemical investigations performed within a wide potential window show an increased structural stability of the spinel component when incorporated into the composite environment. All the composite materials exhibit initial discharge capacities >200 mAh g–1. The compositions with x = 0.5 and 0.7 show excellent cycling stability among the investigated materials. Moreover, the first cycle Coulombic efficiency achieve a dramatic improvement with the incorporation of the spinel component. More notably, the composite materials with increased spinel component exhibit superior rate capability compared with the parent Li‐rich material especially together with the highest capacity retention for x = 0.5 composition, making this as the optimal high‐energy high‐power material. The mechanisms involved in the symbiotic relationship of the spinel and layered Li‐rich components in the above composites are discussed.  相似文献   

20.
Copper is used as current collector in rechargeable ion batteries due to its outstanding electronic conductivity and low cost. The intrinsic inactivity of copper, however, makes it a poor candidate for an electrode material without further structural modification. To fully utilize its high electronic conductivity, herein, the incorporation of heterogeneous phosphorus combined with building a unique 3D hollow structure is proposed. The as‐prepared copper phosphide hollow nanocubes deliver a stable capacity of 325 mAh·g?1 at 50 mA·g?1 and fast charging and discharging via pseudocapacitance behavior. The outstanding electrochemical performance is attributed to the synergetic effects of high electronic conductivity of copper and the high sodium storage capability of phosphorus. In addition, this facile synthesis method is also easily scaled up for practical applications. Thus, copper phosphide is a promising anode material for sodium ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号