首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sulfurization with various atmosphere and postheat treatments has been reported for earth abundant kesterite Cu2ZnSnS4 (CZTS) preparation as cost‐effective material for next‐generation solar cells. A full understanding of the nanoscale microstructure and chemistry of CZTS/CdS interface obtained from these different fabrication routes is currently lacking, yet is critical to developing optimal processing routes for high‐performance kesterite solar cells. Here, the first detailed investigation of the interfacial microstructure and chemistry of CdS/Cu2ZnSnS4 heterojunctions is presented. For CZTS obtained from sulfurization in a sulfur‐only atmosphere where highly defective surfaces are present, air annealing followed by etching in the initial stage of chemical bath deposition (CBD) process can effectively eliminate interfacial defects and allow the epitaxial growth of CBD‐CdS, improving the minority lifetime, open circuit voltage (VOC), and fill factor (FF) of the devices, while blocking Cd diffusion and deteriorating short circuit current (Jsc). For CZTS from sulfurization in a combined sulfur and SnS atmosphere where CBD‐CdS can directly epitaxially grow on CZTS and Cd‐diffusion is clearly observed, associated devices show the longest lifetime and the highest efficiency of 8.76%. Epitaxial growth of CdS and Cd diffusion into CZTS are found to be two crucial features minimizing interfacial recombination and achieving high‐efficiency devices. This will not only enhance the understanding of the device structure and physics of kesterite based solar cells, but also provide an effective way for designing other chalcogenide heterojunction solar cells.  相似文献   

2.
To alleviate the limitations of pure sulfide Cu2ZnSnS4 (CZTS) thin film, such as band gaps adjustment, antisite defects, secondary phase and microstructure, Cadmium is introduced into CZTS thin film to replace Zn partially to form Cu2Zn1?xCdxSnS4 (CZCTS) thin film by low‐cost sol–gel method. It is demonstrated that the band gaps and crystal structure of CZCTS thin films are affected by the change in Zn/Cd ratio. In addition, the ZnS secondary phase can be decreased and the grain sizes can be improved to some degree by partial replacement of Zn with Cd in CZCTS thin film. The power conversion efficiency of CZTS solar cell device is enhanced significantly from 5.30% to 9.24% (active area efficiency 9.82%) with appropriate ratio of Zn/Cd. The variation of device parameter as a function of Zn/Cd ratio may be attributed to the change in electronic structure of the bulk CZCTS thin film (i.e., phase change from kesterite to stannite), which in turn affects the band alignment at the CZCTS/buffer interface and the charge separation at this interface.  相似文献   

3.
4.
High‐performance Cu2ZnSnS4 photovoltaic devices are demonstrated using electrodeposition of metal stacks and annealing of a CuZnSn precursor in a sulfur atmosphere. A champion electroplated Cu2ZnSnS4 solar cell achieves a power conversion efficiency of 7.3%, which is a record efficiency for electrodeposited Cu2ZnSnS4 solar devices. The device performance points to electrodeposition and annealing as a low‐cost and viable approach to earth‐abundant solar cell fabrication.  相似文献   

5.
Cu2ZnSnS4(CZTS) thin‐film solar cell absorbers with different bandgaps can be produced by parameter variation during thermal treatments. Here, the effects of varied annealing time in a sulfur atmosphere and an ordering treatment of the absorber are compared. Chemical changes in the surface due to ordering are examined, and a downshift of the valence band edge is observed. With the goal to obtain different band alignments, these CZTS absorbers are combined with Zn1?xSnxOy (ZTO) or CdS buffer layers to produce complete devices. A high open circuit voltage of 809 mV is obtained for an ordered CZTS absorber with CdS buffer layer, while a 9.7% device is obtained utilizing a Cd free ZTO buffer layer. The best performing devices are produced with a very rapid 1 min sulfurization, resulting in very small grains.  相似文献   

6.
7.
8.
By application of thermal annealing and UV ozone simultaneously, a solution‐processed NiOx film can achieve a work function of approximately –5.1 eV at a temperature below 150 °C, which allows the processing of NiOx that is compatible with fabrication of polymer solar cells (PSCs) on plastic substrates. The low processing temperature, which is greatly reduced from 250–400 °C to 150 °C, is attributed to the high concentration of NiOOH species on the film surface. This concentration will result in a large surface dipole and lead to increased work function. The pretreated NiOx is demonstrated to be an efficient buffer layer in PSCs based on polymers with different highest occupied molecular orbital energy levels. Compared with conventional poly(3,4‐ethylenedioxy‐thiophene):poly(styrenesulfonate)‐buffered PSCs, the NiOx‐buffered PSCs achieve similar or improved device performance as well as enhanced device stability.  相似文献   

9.
10.
11.
12.
13.
In the field of organic solar cells (OSCs), tandem structure devices exhibit very attractive advantages for improving power conversion efficiency (PCE). In addition to the well researched novel pair of active layers in different subcells, the construction of interconnecting layer (ICL) also plays a critical role in achieving high performance tandem devices. In this work, a new way of achieving environmentally friendly solvent processed polymeric ICL by adopting poly[(9,9‐bis(3′‐(N,N‐dimethylamino)propyl)‐2,7‐fluorene)‐alt‐5,5′‐bis(2,2′‐thiophene)‐2,6‐naphthalene‐1,4,5,8‐tetracaboxylic‐N,N′‐di(2‐ethylhexyl)imide] (PNDIT‐F3N) blended with poly(ethyleneimine) (PEI) as the electron transport layer (ETL) and PEDOT:PSS as the hole transport layer is reported. It is found that the modification ability of PNDIT‐F3N on PEDOT can be linearly tuned by the incorporation of PEI, which offers the opportunity to study the charge recombination behavior in ICL. At last, tandem OSC with highest PCE of 12.6% is achieved, which is one of the best tandem OSCs reported till now. These results offer a new selection for constructing efficient ICL in high performance tandem OSCs and guide the way of design new ETL materials for ICL construction, and may even be integrated in future printed flexible large area module device fabrication with the advantages of environmentally friendly solvent processing and thickness insensitivity.  相似文献   

14.
Solar cells become a viable energy source to charge lithium ion batteries. Here a simple and efficient photocharging design approach is demonstrated, where a promising low cost single junction solar cell such as perovskite solar cell or dye sensitized solar cell efficiently charges a Li4Ti5O12‐LiCoO2 Li‐ion cell using a DC–DC voltage boost converter. The converter boosts the low input voltage of a single junction solar cell to charge a lithium ion cell and offers advantages including maximum power point tracking of solar photovoltaics and overvoltage protection for the lithium ion cell. This is the first demonstration of this technology. This approach leads to the highest reported overall efficiency of 9.36% and average storage efficiency of 77.2% at 0.5 C discharge for a perovskite solar cell‐converter charging. The high efficiency for the perovskite solar cell‐converter charging is attributed to maximum power harvesting along with high power conversion efficiency of the perovskite solar cell and low potential polarization between the charge and discharge voltage plateaus for the Li4Ti5O12‐LiCoO2 Li‐ion cell.  相似文献   

15.
The identification of performance‐limiting factors is a crucial step in the development of solar cell technologies. Cu2ZnSn(S,Se)4‐based solar cells have shown promising power conversion efficiencies in recent years, but their performance remains inferior compared to other thin‐film solar cells. Moreover, the fundamental material characteristics that contribute to this inferior performance are unclear. In this paper, the performance‐limiting role of deep‐trap‐level‐inducing 2CuZn+SnZn defect clusters is revealed by comparing the defect formation energies and optoelectronic characteristics of Cu2ZnSnS4 and Cu2CdSnS4. It is shown that these deleterious defect clusters can be suppressed by substituting Zn with Cd in a Cu‐poor compositional region. The substitution of Zn with Cd also significantly reduces the bandgap fluctuations, despite the similarity in the formation energy of the CuZn+ZnCu and CuCd+CdCu antisites. Detailed investigation of the Cu2CdSnS4 series with varying Cu/[Cd+Sn] ratios highlights the importance of Cu‐poor composition, presumably via the presence of VCu, in improving the optoelectronic properties of the cation‐substituted absorber. Finally, a 7.96% efficient Cu2CdSnS4 solar cell is demonstrated, which shows the highest efficiency among fully cation‐substituted absorbers based on Cu2ZnSnS4.  相似文献   

16.
17.
This study proposes a novel strategy of controllable deamination of Co–NH3 complexes in a system containing Ni(OH)2 to synthesize ultrasmall ternary oxide nanoparticles (NPs), NiCo2O4. Through this approach, ultrasmall (5 nm on average) and well‐dispersed NiCo2O4 NPs without exotic ligands are obtained, which enables the formation of uniform and pin‐hole free films. The tightly covered NiCo2O4 films also facilitate the formation of large perovskite grains and thus reduce film defects. The results show that with the NiCo2O4 NPs as the hole transport layer (HTL), the perovskite solar cells reach a high power conversion efficiency (PCE) of 18.23% and a promising stability (maintained ≈90% PCE after 500 h light soaking). To the best of the author's knowledge, it is the first time that spinel NiCo2O4 NPs have been applied as hole transport layer in perovskite solar cells successfully. This work not only demonstrates the potential applications of ternary oxide NiCo2O4 as HTLs in hybrid perovskite solar cells but also provides an insight into the design and synthesis of ultrasmall and ligand‐free NPs HTLs to enable cost‐effective photovoltaic devices.  相似文献   

18.
19.
This study offers new insight into the role of Na in Cu2ZnSnS4 (CZTS) thin film solar cells by studying samples with a spatially varying alkali distribution. This is achieved by omitting a diffusion barrier between the soda‐lime glass substrate and the Mo back contact, where compositional variations of the glass inherently result in non‐uniform alkali distributions in the CZTS. By correlating light beam induced current (LBIC) maps with secondary ion mass spectrometry composition maps, it is shown that samples containing regions of higher Na concentration (“hot spots”) have corresponding LBIC hot spots on comparable length scales. Samples containing an alkali diffusion barrier have lower LBIC dispersion; thus, LBIC can be used to evaluate non‐uniformity in CZTS devices, where a common cause is Na inhomogeneity. Moreover, it is shown that the Na hot spots are strongly correlated with other compositional variations in the device, including increased Cu in‐diffusion with the underlying MoS2 layer and decreased diffusion of Cd to the back contact. Neither of these effects are well understood in CZTS devices, and neither have previously been correlated with the presence or absence of Na.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号