首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The synthesis and growth of perovskite films with controlled crystallinity and microstructure for highly efficient and stable solar cells is a critical issue. In this work, thiourea is introduced into the CH3NH3PbI3 precursor with two‐step sequential ethyl acetate (EA) interfacial processing. This is shown for the first time to grow compact microsized and monolithically grained perovskite films. X‐ray diffraction patterns and infrared spectroscopy are used to prove that thiourea significantly impacts the perovskite crystallinity and morphology by forming the intermediate phase MAI·PbI2·S?C(NH2)2. Afterward, the residual thiourea which coursed charge recombination is completely extracted by the sequential EA processing. The product has improved light harvesting, suppressed defect state, and enhanced charge separation and transport. The sequentially EA processed perovskite solar cells offer an impressive 18.46% power conversion efficiency and excellent stability in ambient air. More importantly, the EA postprocessed perovskite solar cells also have excellent voltage response under ultraweak light (0.05% sun) with promising utility in photodetectors and photoelectric sensors.  相似文献   

3.
In this work, different from the commonly explored strategy of incorporating a smaller cation, MA+ and Cs+ into FAPbI3 lattice to improve efficiency and stability, it is revealed that the introduction of phenylethylammonium iodide (PEAI) into FAPbI3 perovksite to form mixed cation FAxPEA1–xPbI3 can effectively enhance both phase and ambient stability of FAPbI3 as well as the resulting performance of the derived devices. From our experimental and theoretical calculation results, it is proposed that the larger PEA cation is capable of assembling on both the lattice surface and grain boundaries to form quais‐3D perovskite structures. The surrounding of PEA+ ions at the crystal grain boundaries not only can serve as molecular locks to tighten FAPbI3 domains but also passivate the surface defects to improve both phase and moisture stablity. Consequently, a high‐performance (PCE:17.7%) and ambient stable FAPbI3 solar cell could be developed.  相似文献   

4.
Supported by the density functional theory (DFT) calculations, for the first time, a fluorinated aromatic cation, 2‐(4‐fluorophenyl)ethyl ammonium iodide (FPEAI), is introduced to grow in situ a low dimensional perovskite layer atop 3D perovskite film with excess PbI2. The resulted (p‐FC6H4C2H4NH3)2[PbI4] perovskite functions as a protective capping layer to protect the 3D perovskite from moisture. In the meantime, the thin layer facilitates charge transfer at the interfaces, thereby reducing the nonradiative recombination pathways. Laser scanning confocal microscopy unveils visually the distribution of the 2D perovskite layer on top of the 3D perovskite. When employing the 3D–2D perovskite as the absorbing layer in the photovoltaic cells, a high power conversion efficiency of 20.54% is realized. Superior device performance and moisture stability are observed with the modified perovskite over the whole stability test period.  相似文献   

5.
6.
The notoriously poor stability of perovskite solar cells is a crucial issue restricting commercial applications. Here, a fluorinated perylenediimide (F‐PDI) is first introduced into perovskite film to enhance the device's photovoltaic performance, as well as thermal and moisture stability simultaneously. The conductive F‐PDI molecules filling at grain boundaries (GBs) and surface of perovskite film can passivate defects and promote charge transport through GBs due to the chelation between carbonyl of F‐PDI and noncoordinating lead. Furthermore, an effective multiple hydrophobic structure is formed to protect perovskite film from moisture erosion. As a result, the F‐PDI‐incorporated devices based on MAPbI3 and Cs0.05 (FA0.83MA0.17)0.95 Pb (Br0.17I0.83)3 absorber achieve champion efficiencies of 18.28% and 19.26%, respectively. Over 80% of the initial efficiency is maintained after exposure in air for 30 days with a relative humidity (RH) of 50%. In addition, the strong hydrogen bonding of F···H‐N can immobilize methylamine ion (MA+) and thus enhances the thermal stability of device, remaining nearly 70% of the initial value after thermal treatment (100 °C) for 24 h at 50% RH condition.  相似文献   

7.
8.
9.
The rapid pace of development for hybrid perovskite photovoltaics has recently resulted in promising figures of merit being obtained with regard to device stability. Rather than relying upon expensive barrier materials, realizing market‐competitive lifetimes is likely to require the development of intrinsically stable devices, and to this end accelerated aging tests can help identify degradation mechanisms that arise over the long term. Here, oxygen‐induced degradation of archetypal perovskite solar cells under operation is observed, even in dry conditions. With prolonged aging, this process ultimately drives decomposition of the perovskite. It is deduced that this is related to charge build‐up in the perovskite layer, and it is shown that by efficiently extracting charge this degradation can be mitigated. The results confirm the importance of high charge‐extraction efficiency in maximizing the tolerance of perovskite solar cells to oxygen.  相似文献   

10.
Adding a small amount of CsI into mixed cation‐halide perovskite film via a one‐step method has been demonstrated as an excellent strategy for high‐performance perovskite solar cells (PSCs). However, the one‐step method generally relies on an antisolvent washing process, which is hard to control and not suitable for fabricating large‐area devices. Here, CsF is employed and Cs is incorporated into perovskite film via a two‐step method. It is revealed that CsF can effectively diffuse into the PbI2 seed film, and drastically enhances perovskite crystallization, leading to high‐quality Cs‐doped perovskite film with a very long photoluminescence carrier lifetime (1413 ns), remarkable light stability, thermal stability, and humidity stability. The fabricated PSCs show power conversion efficiency (PCE) of over 21%, and they are highly thermally stable: in the aging test at 60 °C for 300 h, 96% of the original PCE remains. The CsF incorporation process provides a new avenue for stable high‐performance PSCs.  相似文献   

11.
12.
High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these features are difficult to be realized. There are very few reports of the fabrication of polycrystalline PVSCs with power conversion efficienies (PCE) insensitive to film thickness beyond 600 nm. The main reason lies in more serious recombination of the thick perovskite layer compared to the thin layer. Herein, this challenge is addressed by a simple hot casting method to formulate high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. It is found that increasing the temperature to 70 °C can dramatically increase the film thickness and enlarge the perovskite crystal, therefore boost the efficiency from ≈16% to ≈19%. Notably, a record PCE of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs. The PCE remains steady around 19% when modifying the perovskite layer from 700 to 1150 nm. Moreover, these thick‐film PVSCs show good stability with 80% of its initial efficiency after 30 d in air with a humidity of 50%. Overall, this simple yet effective method has a great potential in the mass manufacture of PVSCs.  相似文献   

13.
Perovskite solar cells (PSCs) have attracted much attention in the past decade and their power conversion efficiency has been rapidly increasing to 25.2%, which is comparable with commercialized solar cells. Currently, the long‐term stability of PSCs remains as a major bottleneck impeding their future commercial applications. Beyond strengthening the perovskite layer itself and developing robust external device encapsulation/packaging technology, integration of effective barriers into PSCs has been recognized to be of equal importance to improve the whole device’s long‐term stability. These barriers can not only shield the critical perovskite layer and other functional layers from external detrimental factors such as heat, light, and H2O/O2, but also prevent the undesired ion/molecular diffusion/volatilization from perovskite. In addition, some delicate barrier designs can simultaneously improve the efficiency and stability. In this review article, the research progress on barrier designs in PSCs for improving their long‐term stability is reviewed in terms of the barrier functions, locations in PSCs, and material characteristics. Regarding specific barriers, their preparation methods, chemical/photoelectronic/mechanical properties, and their role in device stability, are further discussed. On the basis of these accumulative efforts, predictions for the further development of effective barriers in PSCs are provided at the end of this review.  相似文献   

14.
Stability is one of the key challenges for industrial scale commercialization of perovskite solar cells. In this work, a degradation mechanism that depends on materials and bias conditions of the device during light‐soaking is proposed. The observed degradation is linked to the additive 4‐tert‐butyl pyridine (tBP), crucial to the hole transport layer of most perovskite solar cells, and gold. This conclusion is reached through the statistical analysis of multiple compositional profiles of light‐soaked and nonlight‐soaked devices and by selective replacement of material layers of the device. Moreover, the rate of the light‐induced degradation is enhanced by operation at forward bias, which is required for power generation. Thus, this work stresses the need for the development of transport layers that do not require tBP, and to replace gold to produce high‐performing devices that are also stable under operating conditions.  相似文献   

15.
The photovoltaic performance of perovskite solar cells (PVSCs) is extremely dependent on the morphology and crystallization of the perovskite film, which is affected by the deposition method. In this work, a new approach is demonstrated for forming the PbI2 nanostructure and the use of high CH3NH3I concentration which are adopted to form high‐quality (smooth and PbI2 residue‐free) perovskite film with better photovoltaic performances. On the one hand, self‐assembled porous PbI2 is formed by incorporating small amount of rationally chosen additives into the PbI2 precursor solutions, which significantly facilitate the conversion of perovskite without any PbI2 residue. On the other hand, by employing a relatively high CH3NH3I concentration, a firmly crystallized and uniform CH3NH3PbI3 film is formed. As a result, a promising power conversion efficiency of 16.21% is achieved in planar‐heterojunction PVSCs. Furthermore, it is experimentally demonstrated that the PbI2 residue in perovskite film has a negative effect on the long‐term stability of devices.  相似文献   

16.
Each component layer in a perovskite solar cell plays an important role in the cell performance. Here, a few types of polymers including representative p‐type and n‐type semiconductors, and a classical insulator, are chosen to dope into a perovskite film. The long‐chain polymer helps to form a network among the perovskite crystalline grains, as witnessed by the improved film morphology and device stability. The dewetting process is greatly suppressed by the cross‐linking effect of the polymer chains, thereby resulting in uniform perovskite films with large grain sizes. Moreover, it is found that the polymer‐doped perovskite shows a reduced trap‐state density, likely due to the polymer effectively passivating the perovskite grain surface. Meanwhile the doped polymer formed a bridge between grains for efficient charge transport. Using this approach, the solar cell efficiency is improved from 17.43% to as high as 19.19%, with a much improved stability. As it is not required for the polymer to have a strict energy level matching with the perovskite, in principle, one may use a variety of polymers for this type of device design.  相似文献   

17.
Novel large π‐conjugated carbon material, graphdiyne (GD), as a dopant to poly(3‐hexylthiophene) (P3HT) hole‐transporting material (HTM) layer, is introduced into perovskite solar cells for the first time. Raman spectroscopy and ultraviolet photoelectron spectroscopy measurements reveal that relatively strong π–π stacking interaction occurs between GD particles and P3HT (so‐called P3HT/GD composite HTM), favorable for the hole transportation and improvement of the cell performance. On the other hand, some GD aggregates exhibit a scattering nature, and thus help to increase the light absorption of the perovskite solar cells in the long wavelength range. As high as 14.58% light‐to‐electricity conversion efficiency is achieved, superior to the pristine P3HT‐based devices. Additionally, the devices exhibit good stability and reproducibility. Time‐resolved photoluminescence decay measurements reveal that the P3HT/GD HTM can accelerate the hole extraction compared with pristine P3HT.  相似文献   

18.
In perovskite solar cells (PSCs), the interfaces are a weak link with respect to degradation. Electrochemical reactivity of the perovskite's halides has been reported for both molecular and polymeric hole selective layers (HSLs), and here it is shown that also NiO brings about this decomposition mechanism. Employing NiO as an HSL in p–i–n PSCs with power conversion efficiency (PCE) of 16.8%, noncapacitive hysteresis is found in the dark, which is attributable to the bias‐induced degradation of perovskite/NiO interface. The possibility of electrochemically decoupling NiO from the perovskite via the introduction of a buffer layer is explored. Employing a hybrid magnesium‐organic interlayer, the noncapacitive hysteresis is entirely suppressed and the device's electrical stability is improved. At the same time, the PCE is improved up to 18% thanks to reduced interfacial charge recombination, which enables more efficient hole collection resulting in higher Voc and FF.  相似文献   

19.
Layered low‐dimensional perovskite structures employing bulky organic ammonium cations have shown significant improvement on stability but poorer performance generally compared to their 3D counterparts. Here, a mixed passivation (MP) treatment is reported that uses a mixture of bulky organic ammonium iodide (iso‐butylammonium iodide, iBAI) and formammidinium iodide (FAI), enhancing both power conversion efficiency and stability. Through a combination of inactivation of the interfacial trap sites, characterized by photoluminescence measurement, and formation of an interfacial energetic barrier by which ionic transport is reduced, demonstrated by Kelvin probe force microscopy, MP treatment of the perovskite/hole transport layer interface significantly suppresses photocurrent hysteresis. Using this MP treatment, the champion mixed‐halide perovskite cell achieves a reverse scan and stabilized power conversion efficiency of 21.7%. Without encapsulation, the devices show excellent moisture stability, sustaining over 87% of the original performance after 38 d storage in ambient environment under 75 ± 20% relative humidity. This work shows that FAI/ i BAI, is a new and promising material combination for passivating perovskite/selective‐contact interfaces.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号