首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flexible and semitransparent organic solar cells (OSCs) have been regarded as the most promising photovoltaic devices for the application of OSCs in wearable energy resources and building‐integrated photovoltaics. Therefore, the flexible and semitransparent OSCs have developed rapidly in recent years through the synergistic efforts in developing novel flexible bottom or top transparent electrodes, designing and synthesizing high performance photoactive layer and low temperature processed electrode buffer layer materials, and device architecture engineering. To date, the highest power conversion efficiencies have reached over 10% of the flexible OSCs and 7.7% with average visible transmittance of 37% for the semitransparent OSCs. Here, a comprehensive overview of recent research progresses and perspectives on the related materials and devices of the flexible and semitransparent OSCs is provided.  相似文献   

2.
3.
Extensive efforts have been devoted during the last decade to organic solar cell research that has led to remarkable progress and achieved power conversion efficiencies (PCEs) in excess of 10%. Among the existing flexible organic solar cells, ultrathin organic solar cells with a total thickness <10 µm have important advantages, including good mechanical bending stabilities and good conformability. These advantages have led to power generation solutions for wearable electronics. In this essay, the progress of flexible and ultrathin organic solar cells, and the future research directions pertaining to these cells are discussed based on the potential applications of textile‐compatible solar cells. Both process engineering and development of the material of ultrathin substrate films have improved the PCE of ultrathin organic solar cells, which in turn have led to the small PCE difference between flexible organic solar cells with substrate thickness >10 µm and ultrathin organic solar cells with substrate thickness ≤10 µm. Key technologies for the further improvement of PCE of flexible/ultrathin organic solar cells are discussed. Strategies to improve the stability and some important aspects, which determine the mechanical robustness of flexible organic solar cells, are also presented and discussed.  相似文献   

4.
5.
The effects of cathode modification by a conjugated polymer interlayer PFPA1 on the performance of reversed organic solar cells (substrate/cathode/active layer/transparent anode) based on different active material systems and different substrate electrodes are systematically investigated. A reduction of the work function irrespective of the substrate cathode used is observed upon the deposition of the PFPA1 interlayer, which is further related to an improved built‐in electric field and open‐circuit voltage. The amphiphilic character of the PFPA1 interlayer alters the surface energy of the substrate cathode, leading to the formation of a better active layer morphology aiding efficient exciton dissociation and photocurrent extraction in the modified solar cells. Hence, internal quantum efficiency is found to be significantly higher than that of their unmodified counterparts, while optically, the modified and unmodified solar cells are identical. Moreover, the deep highest occupied molecular orbital (HOMO) of the PFPA1 interlayer improves the selectivity for all investigated substrate cathodes, thus enhancing the fill factor.  相似文献   

6.
Semitransparent organic solar cells (ST‐OSCs) have appealing features, such as flexibility, transparency, and color in addition to generating clean energy, and therefore show potential applications in building integrated photovoltaics and photovoltaic vehicles. Concerted efforts in materials synthesis (particularly low‐band‐gap polymer donors and nonfullerene acceptors) and device optimization (particularly incorporating transparent electrodes) have raised the efficiencies of ST‐OSCs to >10%, with average visible transparency of >30%. In this Research News article, the recent progress in nonfullerene‐based ST‐OSCs is summarized and discussed. The future perspectives and research directions for the ST‐OSCs field are proposed.  相似文献   

7.
8.
9.
10.
Semi‐transparent (ST) organic solar cells with potential application as power generating windows are studied. The main challenge is to find proper transparent electrodes with desired electrical and optical properties. In this work, this is addressed by employing an amphiphilic conjugated polymer PFPA‐1 modified ITO coated glass substrate as the ohmic electron‐collecting cathode and PEDOT:PSS PH1000 as the hole‐collecting anode. For active layers based on different donor polymers, considerably lower reflection and parasitic absorption are found in the ST solar cells as compared to solar cells in the standard geometry with an ITO/PEDOT:PSS anode and a LiF/Al cathode. The ST solar cells have remarkably high internal quantum efficiency at short circuit condition (~90%) and high transmittance (~50%). Hence, efficient ST tandem solar cells with enhanced power conversion efficiency (PCE) compared to a single ST solar cell can be constructed by connecting the stacked two ST sub‐cells in parallel. The total loss of photons by reflection, parasitic absorption and transmission in the ST tandem solar cell can be smaller than the loss in a standard solar cell based on the same active materials. We demonstrate this by stacking five separately prepared ST cells on top of each other, to obtain a higher photocurrent than in an optimized standard solar cell.  相似文献   

11.
The dynamics of charge carriers after their creation at, or near, an interface play a critical role in determining the efficiency of organic solar cells as they dictate, via mechanisms that are not yet fully understood, the pathways for charge separation and recombination. Here, a combination of ultrafast transient spectroscopy and kinetic Monte Carlo simulations based on a minimalistic model are used to examine various aspects of these charge dynamics in a typical donor‐acceptor copolymer:methanofullerene blend. The observed rates of charge carrier energetic relaxation and recombination for a sequence of charge densities can be all consistently described in terms of the extended Gaussian disorder model. The physical picture that arises is a) that initial charge motion is highly diffusive and boosted by energetic relaxation in the disordered density of states and b) that mobile charge carriers dissociate from and re‐associate into Coulombically associated pairs faster than they recombine, especially at early times. A simple analytical calculation confirms this picture and can be used to identify sub‐Langevin recombination as the cause for quantitative deviations between the Monte Carlo calculations and the measured concentration dependence of the charge recombination.  相似文献   

12.
Organic solar cells have the potential to become the cheapest form of electricity, beating even silicon photovoltaics. This article summarizes the state of the art in the field, highlighting research challenges, mainly the need for an efficiency increase as well as an improvement in long-term stability. It discusses possible current and future applications, such as building integrated photovoltaics or portable electronics. Finally, the environmental footprint of this renewable energy technology is evaluated, highlighting the potential to be the energy generation technology with the lowest carbon footprint of all.  相似文献   

13.
The device performance of organic polymer:fullerene bulk heterojunction solar cells strongly depends on the interpenetrating network of the involved donor and acceptor materials in the active layer. Since morphology formation depends on the conditions of film preparation, the final morphology varies for different deposition methods. In order to understand and optimize industrial coating processes and, therefore, the performance of the solar cells produced, a deeper understanding of structure formation is important. In situ measurements of slot‐die printed polymer:fullerene active layers are presented that reveal insights into the evolution of the structure. Polymer crystallization and ordering is monitored by in situ grazing incidence wide angle X‐ray scattering (GIWAXS), and in situ grazing incidence small‐angle X‐ray scattering (GISAXS). The development of the morphology exhibits five stages independent of the drying conditions. Two growth rates are observed, an initial slow formation of poly(3‐hexylthiophene‐2,5‐diyl) crystallites in well‐aligned edge‐on orientation followed by a rapid crystal growth. By combining the GIWAXS and GISAXS measurements, a five‐stage growth and assembly process is found and described in detail along with a proposed model of the structural evolution. The findings are an important step in tailoring the assembly process.  相似文献   

14.
15.
16.
Efficient dielectric scatterers based on a mixture of TiO2 nanoparticles and polydimethylsiloxane are demonstrated for light trapping in semitransparent organic solar cells. An improvement of 80% in the photocurrent of an optimized semitransparent solar cell is achieved with the dielectric scatterer with ≈100% diffuse reflectance for wavelengths larger than 400 nm. For a parallel tandem solar cell, the dielectric scatterer generates 20% more photocurrent compared with a silver mirror beneath the cell; for a series tandem solar cell, the dielectric scatterer can be used as a photocurrent balancer between the subcells with different photoabsorbing materials. The power conversion efficiency of the tandem cell in series configuration with balanced photocurrent in the subcells exceeds that of an optimized standard solar cell with a reflective electrode. The characteristics of polydimethylsiloxane, such as flexibility and the ability to stick conformably to surfaces, also remain in the dielectric scatterers, which makes the demonstrated light trapping configuration highly suitable for large scale module manufacturing of roll‐to‐roll printed organic single‐ or tandem‐junction solar cells.  相似文献   

17.
As organic solar cells (OSCs) and perovskite solar cells (PVSCs) move closer to commercialization, further efforts toward optimizing both cell efficiency and stability are needed. As interfaces strongly affect device performance and degradation processes, interfacial engineering by employing various materials as hole transport layers (HTLs) and electron transport layers (ETLs) has been a very active field of research in OSCs and PVSCs. Among them, inorganic materials exhibit significant advantages in promoting device performance due to their excellent charge transporting properties and intrinsic thermal and chemical robustness. In this review, an extensive overview is provided of inorganic semiconductors such as copper‐based ones with emphasis on copper iodide and copper thiocyanate, transition metal chalcogenides, nitrides and carbides as well as hybrid materials based on these inorganic compounds that have been recently employed as HTLs and ETLs in OSCs and PVSCs. Following a short discussion of the main optoelectronic and physical properties that interfacial materials used as HTLs and ETLs should possess, the functionalities of the aforementioned materials as interfacial, charge transport, layers in OSCs and PVSCs are discussed in depth. It is concluded by providing guidelines for further developments that could significantly extend the implementation of these materials in solar cells.  相似文献   

18.
19.
Over 25% efficiencies have been achieved by organic–inorganic hybrid perovskite solar cells (PSCs). However, their practical applications are limited by the instability of the hybrid perovskite materials. Replacing hybrid perovskites with inorganic CsPbX3 perovskites shows great promise to address the above issue and much progress has been made. To achieve high efficiency and stable inorganic CsPbX3 PSCs, organic molecular engineering has been playing a vital role. Herein, the progress of the organic molecular engineering in inorganic CsPbX3 PSCs is systematically reviewed. First, structure evolution induced by organic molecular engineering for inorganic CsPbX3 perovskites is demonstrated. Then, organic molecular engineering in CsPbX3 PSCs is categorized and reviewed (alloying in perovskite structures, as sacrificial agents, forming 2D structures, and modifying surfaces and interfaces). Finally, future research directions are suggested to further improve the performance of inorganic PSCs.  相似文献   

20.
Ternary strategies show over 16% efficiencies with increased current/voltage owing to complementary absorption/aligned energy level contributions. However, poor understanding of how the guest components tune the active layer structures still makes rational selection of material systems challenging. In this study, two phthalimide based ultrawide bandgap polymer donor guests are synthesized. Parallel energies between the highest occupied molecular orbitals of host and guest polymers are achieved via incorporating selnophene on the guest polymer. Solid‐state 19F magic angle spinning nuclear magnetic spectroscopy, graze‐incidence wide‐angle X‐ray diffraction, elemental transmission electron microscopy mapping, and transient absorption spectroscopy are combined to characterize the active layer structures. Formation of the individual guest phases selectively improves the structural order of donor and acceptor phase. The increased electron mobility in combination with the presence of the additional paths made by the guest not only minimizes the influence on charge generation and transport of the host system but also contributes to increasing the overall current generation. Therefore, phthalimide based polymers can be potential candidates that enable the simultaneous increase of open‐circuit voltage and short‐circuit current‐density via fine‐tuning energy levels and the formation of additional paths for enhancing current generation in parallel‐like multicomponent organic solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号