首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Silicon has been intensively pursued as the most promising anode material for Li‐ion batteries due to its high theoretical capacity of 3579 mAh/g. Micro‐sized Si–C composites composed of nanoscale primary building blocks are attractive Si‐based anodes for practical application because they not only achieve excellent cycling stability, but also offer both gravimetric and volumetric capacity. However, the effects of key parameters in designing such materials on their electrochemical performance are unknown and how to optimize them thus remains to be explored. Herein, the influence of Si nanoscale building block size and carbon coating on the electrochemical performance of the micro‐sized Si–C composites is investigated. It is found that the critical Si building block size is 15 nm, which enables a high capacity without compromising the cycling stability, and that carbon coating at higher temperature improves the first cycle coulombic efficiency (CE) and the rate capability. Corresponding reasons underlying electrochemical performance are revealed by various characterizations. Combining both optimized Si building block size and carbon coating temperature, the resultant composite can sustain 600 cycles at 1.2 A/g with a fixed lithiation capacity of 1200 mAh/g, the best cycling performance with such a high capacity for micro‐sized Si‐based anodes.  相似文献   

2.
The combination of high‐capacity anodes and high‐voltage cathodes has garnered a great deal of attention in the pursuit of high‐energy‐density lithium‐ion batteries. As a facile and scalable electrode‐architecture strategy to achieve this goal, a direct one‐pot decoration of high‐capacity silicon (Si) anode materials and of high‐voltage LiCoO2 (LCO) cathode materials is demonstrated with colloidal nanoparticles composed of electroconductive antimony‐doped tin oxide (ATO). The unusual ATO nanoparticle shells enhance electronic conduction in the LCO and Si electrode materials and mitigate unwanted interfacial side reactions between the electrode materials and liquid electrolytes. The ATO‐coated LCO materials (ATO‐LCO) enable the construction of a high‐mass‐loading cathode and suppress the dissolution of cobalt and the generation of by‐products during high‐voltage cycling. In addition, the ATO‐coated Si (ATO‐Si) anodes exhibit highly stable capacity retention upon cycling. Integration of the high‐voltage ATO‐LCO cathode and high‐capacity ATO‐Si anode into a full cell configuration brings unprecedented improvements in the volumetric energy density and in the cycling performance compared to a commercialized cell system composed of LCO/graphite.  相似文献   

3.
Two kinds of free‐standing electrodes, reduced graphene oxide (rGO)‐wrapped Fe‐doped MnO2 composite (G‐MFO) and rGO‐wrapped hierarchical porous carbon microspheres composite (G‐HPC) are fabricated using a frozen lake‐inspired, bubble‐assistance method. This configuration fully enables utilization of the synergistic effects from both components, endowing the materials to be excellent electrodes for flexible and lightweight electrochemical capacitors. Moreover, a nonaqueous HPC‐doped gel polymer electrolyte (GPE‐HPC) is employed to broad voltage window and improve heat resistance. A fabricated asymmetric supercapacitor based on G‐MFO cathode and G‐HPC anode with GPE‐HPC electrolyte achieves superior flexibility and reliability, enhanced energy/power density, and outstanding cycling stability. The ability to power light‐emitting diodes also indicates the feasibility for practical use. Therefore, it is believed that this novel design may hold great promise for future flexible electronic devices.  相似文献   

4.
Pseudocapacitive materials have been highlighted as promising electrode materials to overcome slow diffusion‐limited redox mechanism in active materials, which impedes fast charging/discharging in energy storage devices. However, previously reported pseudocapacitive properties have been rarely used in lithium‐ion batteries (LIBs) and evaluation methods have been limited to those focused on thin‐film‐type electrodes. Hence, a nanocage‐shaped silicon–carbon composite anode is proposed with excellent pseudocapacitive qualities for LIB applications. This composite anode exhibits a superior rate capability compared to other Si‐based anodes, including commercial silicon nanoparticles, because of the higher pseudocapacitive contribution coming from ultrathin Si layer. Furthermore, unprecedent 3D pore design in cage shape, which prevents the particle scale expansion even after full lithiation demonstrates the high cycling stability. This concept can potentially be used to realize high‐power and high‐energy LIB anode materials.  相似文献   

5.
A hybrid nanoarchitecture aerogel composed of WS2 nanosheets and carbon nanotube‐reduced graphene oxide (CNT‐rGO) with ordered microchannel three‐dimensional (3D) scaffold structure was synthesized by a simple solvothermal method followed by freeze‐drying and post annealing process. The 3D ordered microchannel structures not only provide good electronic transportation routes, but also provide excellent ionic conductive channels, leading to an enhanced electrochemical performance as anode materials both for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). Significantly, WS2/CNT‐rGO aerogel nanostructure can deliver a specific capacity of 749 mA h g?1 at 100 mA g?1 and a high first‐cycle coulombic efficiency of 53.4% as the anode material of LIBs. In addition, it also can deliver a capacity of 311.4 mA h g?1 at 100 mA g?1, and retain a capacity of 252.9 mA h g?1 at 200 mA g?1 after 100 cycles as the anode electrode of SIBs. The excellent electrochemical performance is attributed to the synergistic effect between the WS2 nanosheets and CNT‐rGO scaffold network and rational design of 3D ordered structure. These results demonstrate the potential applications of ordered CNT‐rGO aerogel platform to support transition‐metal‐dichalcogenides (i.e., WS2) for energy storage devices and open up a route for material design for future generation energy storage devices.  相似文献   

6.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   

7.
Na3V2(PO4)3 (NVP) is regarded as a promising cathode for advanced sodium‐ion batteries (SIBs) due to its high theoretical capacity and stable sodium (Na) super ion conductor (NASICON) structure. However, strongly impeded by its low electronic conductivity, the general NVP delivers undesirable rate capacity and fails to meet the demands for quick charge. Herein, a novel and facile synthesis of layer‐by‐layer NVP@reduced graphene oxide (rGO) nanocomposite is presented through modifying the surface charge of NVP gel precursor. The well‐designed layered NVP@rGO with confined NVP nanocrystal in between rGO layers offers high electronic and ionic conductivity as well as stable structure. The NVP@rGO nanocomposite with merely ≈3.0 wt% rGO and 0.5 wt% amorphous carbon, yet exhibits extraordinary electrochemical performance: a high capacity (118 mA h g?1 at 0.5 C attaining the theoretical value), a superior rate capability (73 mA h g?1 at 100 C and even up to 41 mA h g?1 at 200 C), ultralong cyclability (70.0% capacity retention after 15 000 cycles at 50 C), and stable cycling performance and excellent rate capability at both low and high operating temperatures. The proposed method and designed layer‐by‐layer active nanocrystal@rGO strategy provide a new avenue to create nanostructures for advanced energy storage applications.  相似文献   

8.
Ultrathin few‐layer materials have attracted intensive research attention because of their distinctive and unique properties. Few‐layer GeP (FL‐GP) is potentially interesting for application in electronics and optoelectronics because of its appropriate band gap and good stability under ambient conditions. Nevertheless, it is a challenge to achieve ultrathin few‐layer or single layer GeP from exfoliation of bulk crystals. Here, a lithiation‐assisted chemical exfoliation technique is employed to achieve FL‐GP, in which the interlayer spacing can be efficiently enlarged after a preliminary lithium ion intercalation, allowing the bulk crystal to be readily exfoliated in a following ultrasonication. As a result, ultrathin FL‐GP is obtained. In a demonstration, the FL‐GP/reduced graphene oxide (rGO) demonstrates remarkable sodium storage performance. The FL‐GP with a two‐dimensional structure shortens the ion transport pathways and alleviates the volume variation during sodiation. Meanwhile, the rGO in the composite improves the conductivity of the whole electrode. The as‐prepared FL‐GP/rGO electrode exhibits a high capacity of 504.2 mAh g?1 at 100 mA g?1, remarkable rate performance, and superior cycling stability in the half cells. FL‐GP/rGO//Na3V2(PO4)3 full cells are also assembled and demonstrated satisfactory electrochemical performance, indicating potential application of the as‐prepared anode materials.  相似文献   

9.
Molybdenum disulfide (MoS2), which possesses a layered structure and exhibits a high theoretical capacity, is currently under intensive research as an anode candidate for next generation of Li‐ion batteries. However, unmodified MoS2 suffers from a poor cycling stability and an inferior rate capability upon charge/discharge processes. Herein, a unique nanocomposite comprising MoS2 nanothorns epitaxially grown on the backbone of carbon nanotubes (CNTs) and coated by a layer of amorphous carbon is synthesized via a simple method. The epitaxial growth of MoS2 on CNTs results in a strong chemical coupling between active nanothorns and carbon substrate via C? S bond, providing a high stability as well as a high‐efficiency electron‐conduction/ion‐transportation system on cycling. The outer carbon layer can well‐accommodate the structural strain in the electrode upon lithium‐ion insertion/extraction. When employed as an anode for lithium storage, the prepared material exhibits remarkable electrochemical properties with a high specific capacity of 982 mA h g?1 at 0.1 A g?1, as well as excellent long‐cycling stability (905 mA h g?1 at 1 A g?1 after 500 cycles) and superior rate capability, confirming its potential application in high‐performance Li‐ion batteries.  相似文献   

10.
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na‐ion and Li‐ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na‐ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li‐ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na‐ion batteries is mainly due to the large Na‐ion size, resulting in slow Na‐ion diffusion and large volume change of porous C/Sn composite anode during alloy/dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy‐based anode materials for Na‐ion batteries.  相似文献   

11.
The current Na+ storage performance of carbon‐based materials is still hindered by the sluggish Na+ ion transfer kinetics and low capacity. Graphene and its derivatives have been widely investigated as electrode materials in energy storage and conversion systems. However, as anode materials for sodium‐ion batteries (SIBs), the severe π–π restacking of graphene sheets usually results in compact structure with a small interlayer distance and a long ion transfer distance, thus leading to low capacity and poor rate capability. Herein, partially reduced holey graphene oxide is prepared by simple H2O2 treatment and subsequent low temperature reduction of graphene oxide, leading to large interlayer distance (0.434 nm), fast ion transport, and larger Na+ storage space. The partially remaining oxygenous groups can also contribute to the capacity by redox reaction. As anode material for SIBs, the optimized electrode delivers high reversible capacity, high rate capability (365 and 131 mAh g?1 at 0.1 and 10 A g?1, respectively), and good cycling performance (163 mAh g?1 after 3000 cycles at a current density of 2 A g?1), which is among the best reported performances for carbon‐based SIB anodes.  相似文献   

12.
Li metal, which has a high theoretical specific capacity and low redox potential, is considered to the most promising anode material for next‐generation Li ion‐based batteries. However, it also exhibits a disadvantageous solid electrolyte interphase (SEI) layer problem that needs to be resolved. Herein, an advanced separator composed of reduced graphene oxide fiber attached to aramid paper (rGOF‐A) is introduced. When rGOF‐A is applied, F? anions, generated from the decomposition of the LiPF6 electrolyte during the SEI layer formation process form semi‐ionic C? F bonds along the surface of rGOF. As Li+ ions are plated, the “F‐doped” rGO surface induces the formation of LiF, which is known as a component of a chemically stable SEI, therefore it helps the Li metal anode to operate stably at a high current of 20 mA cm?2 with a high capacity of 20 mAh cm?2. The proposed rGOF‐A separator successfully achieves a stable SEI layer that could resolve the interfacial issues of the Li metal anode.  相似文献   

13.
Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene‐based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene‐based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high‐performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)‐ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)‐ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage‐related applications are discussed.  相似文献   

14.
As an emerging electrochemical energy storage device, potassium‐ion batteries (PIBs) have drawn growing interest due to the resource‐abundance and low cost of potassium. Graphite‐based materials, as the most common anodes for commercial Li‐ion batteries, have a very low capacity when used an anode for Na‐ion batteries, but they show reasonable capacities as anodes for PIBs. The practical application of graphitic materials in PIBs suffers from poor cyclability, however, due to the large interlayer expansion/shrinkage caused by the intercalation/deintercalation of potassium ions. Here, a highly graphitic carbon nanocage (CNC) is reported as a PIBs anode, which exhibits excellent cyclability and superior depotassiation capacity of 175 mAh g?1 at 35 C. The potassium storage mechanism in CNC is revealed by cyclic voltammetry as due to redox reactions (intercalation/deintercalation) and double‐layer capacitance (surface adsorption/desorption). The present results give new insights into structural design for graphitic anode materials in PIBs and understanding the double‐layer capacitance effect in alkali metal ion batteries.  相似文献   

15.
Lithium‐sulfur (Li‐S) batteries are considered to be one of the promising next‐generation energy storage systems. Considerable progress has been achieved in sulfur composite cathodes, but high cycling stability and discharging capacity at the expense of volumetric capacity have offset their advantages. Herein, a functional separator is presented by coating cobalt‐embedded nitrogen‐doped porous carbon nanosheets and graphene on one surface of a commercial polypropylene separator. The coating layer not only suppresses the polysulfide shuttle effect through chemical affinity, but also functions as an electrocatalyst to propel catalytic conversion of intercepted polysulfides. The slurry‐bladed carbon nanotubes/sulfur cathode with 90 wt% sulfur deliver high reversible capacity of 1103 mA h g?1 and volumetric capacity of 1062 mA h cm?3 at 0.2 C, and the freestanding carbon nanofibers/sulfur cathode provides a high discharging capacity of 1190 mA h g?1 and volumetric capacity of 1136 mA h cm?3 at high sulfur content of 78 wt% and sulfur loading of 10.5 mg cm?2. The electrochemical performance is comparable with or even superior to those in the state‐of‐the‐art carbon‐based sulfur cathodes. The separator reported in this work holds great promise for the development of high‐energy‐density Li‐S batteries.  相似文献   

16.
With high theoretical energy density, rechargeable metal–gas batteries (e.g., Li–CO2 battery) are considered as one of the most promising energy storage devices. However, their practical applications are hindered by the sluggish reaction kinetics and discharge product accumulation during battery cycling. Currently, the solutions focus on exploration of new catalysts while the thorough understanding of their underlying mechanisms is often ignored. Herein, the interfacial electronic interaction within rationally designed catalysts, ZnS quantum dots/nitrogen‐doped reduced graphene oxide (ZnS QDs/N‐rGO) heterostructures, and their effects on transformation and deposition of discharge products in the Li–CO2 battery are revealed. In this work, the interfacial interaction can both enhance the catalytic activities of ZnS QDs/N‐rGO heterostructures and induce the nucleation of discharge products to form a homogeneous Li2CO3/C film with excellent electronic transmission and high electrochemical activities. When the batteries cycle within a cutoff specific capacity of 1000 mAh g?1 at a current density of 400 mA g?1, the cycling performance of the Li–CO2 battery using a ZnS QDs/N‐rGO cathode is over 3 and 9 times than those coupled with a ZnS nanosheets (NST)/N‐rGO cathode and a N‐rGO cathode, respectively. This work provides comprehensive understandings on designing catalysts for Li–CO2 batteries as well as other rechargeable metal–gas batteries.  相似文献   

17.
Reduced graphene oxide (rGO) is used as a conductive additive for nanosilicon‐based lithium battery anodes with the high active‐mass loading typically required for industrial applications. In contrast to conventional Si electrodes that use acetylene black (AcB) as an additive, the rGO system shows pronounced improvement of electrochemical performance, irrespective of the cycling conditions. With capacity limitation, the rGO system results in improved coulombic efficiency (99.9%) and longer cycle life than conventional electrodes. Upon cycling without capacity limitation, much higher discharge capacity is maintained (2000 mAh g?1 after 100 cycles for 2.5 mg of Si cm?2). Used in conjunction with the bridging carboxymethyl cellulose binder, the crumpled and resilient rGO allows highly reversible functioning of the electrode in which the Si particles repeatedly inflate and deflate upon alloying and dealloying with lithium.  相似文献   

18.
Hard carbon has long been considered the leading candidate for anode materials of Na‐ion batteries. Intensive research efforts have been carried out in the search of suitable carbon structure for an improved storage capability. Herein, an anode based on multishelled hollow carbon nanospheres, which are able to deliver an outstanding electrochemical performance with an extraordinary reversible capacity of 360 mAh g?1 at 30 mA g?1, is designed. An interesting dependence of the electrochemical properties on the multishelled structural features is identified: with an increase in the shell number of the model carbon materials, the sloping capacity in the charge/discharge curve remains almost unchanged while the plateau capacity continuously increases, suggesting an adsorption‐filling Na‐storage mechanism for the multishelled hollow hard carbon materials. The findings not only provide new perspective in the structural design of high‐performance anode materials, but also shed light on the complicated mechanism behind Na‐storage by hard carbon.  相似文献   

19.
Antimony (Sb) has emerged as an attractive anode material for both lithium and sodium ion batteries due to its high theoretical capacity of 660 mA h g?1. In this work, a novel peapod‐like N‐doped carbon hollow nanotube encapsulated Sb nanorod composite, the so‐called nanorod‐in‐nanotube structured Sb@N‐C, via a bottom‐up confinement approach is designed and fabricated. The N‐doped‐carbon coating and thermal‐reduction process is monitored by in situ high‐temperature X‐ray diffraction characterization. Due to its advanced structural merits, such as sufficient N‐doping, 1D conductive carbon coating, and substantial inner void space, the Sb@N‐C demonstrates superior lithium/sodium storage performance. For lithium storage, the Sb@N‐C exhibits a high reversible capacity (650.8 mA h g?1 at 0.2 A g?1), excellent long‐term cycling stability (a capacity decay of only 0.022% per cycle for 3000 cycles at 2 A g?1), and ultrahigh rate capability (343.3 mA h g?1 at 20 A g?1). For sodium storage, the Sb@N‐C nanocomposite displays the best long‐term cycle performance among the reported Sb‐based anode materials (a capacity of 345.6 mA h g?1 after 3000 cycles at 2 A g?1) and an impressive rate capability of up to 10 A g?1. The results demonstrate that the Sb@N‐C nanocomposite is a promising anode material for high‐performance lithium/sodium storage.  相似文献   

20.
Driven by increasing demand for high‐energy‐density batteries for consumer electronics and electric vehicles, substantial progress is achieved in the development of long‐life lithium–sulfur (Li–S) batteries. Less attention is given to Li–S batteries with high volume energy density, which is crucial for applications in compact space. Here, a series of elastic sandwich‐structured cathode materials consisting of alternating VS2‐attached reduced graphene oxide (rGO) sheets and active sulfur layers are reported. Due to the high polarity and conductivity of VS2, a small amount of VS2 can suppress the shuttle effect of polysulfides and improve the redox kinetics of sulfur species in the whole sulfur layer. Sandwich‐structured rGO–VS2/S composites exhibit significantly improved electrochemical performance, with high discharge capacities, low polarization, and excellent cycling stability compared with their bare rGO/S counterparts. Impressively, the tap density of rGO–VS2/S with 89 wt% sulfur loading is 1.84 g cm?3, which is almost three times higher than that of rGO/S with the same sulfur content (0.63 g cm?3), and the volumetric specific capacity of the whole cell is as high as 1182.1 mA h cm?3, comparable with the state‐of‐the‐art reported for energy storage devices, demonstrating the potential for application of these composites in long‐life and high‐energy‐density Li–S batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号