首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Featuring pronounced controllability, versatility, and scalability, electrophoretic deposition (EPD) has been proposed as an efficient method for film assembly and electrode/solid electrolyte fabrication in various energy storage/conversion devices including rechargeable batteries, supercapacitors, and fuel cells. High‐quality electrodes and solid electrolytes have been prepared through EPD and exhibit advantageous performances in comparison with those realized with traditional methods. Recent advances in the application of EPD materials in electrochemical energy storage and conversion devices are summarized. In particular, the parameters that influence the efficiency of an EPD process from colloidal preparation to deposition are evaluated with the aim to provide insightful guidance for realizing high‐performance electrochemical energy conversion materials and devices.  相似文献   

2.
3.
Metal sulfide hollow nanostructures (MSHNs) have received intensive attention as electrode materials for electrical energy storage (EES) systems due to their unique structural features and rich chemistry. Here, we summarize recent research progress in the rational design and synthesis of various metal sulfide hollow micro‐/nanostructures with controlled shape, composition and structural complexity, and their applications to lithium ion batteries (LIBs) and hybrid supercapacitors (HSCs). The current understanding of hollow structure control, including single‐shelled, yolk‐shelled, multi‐shelled MSHNs, and their hybrid micro‐/nanostructures with carbon (amorphous carbon nanocoating, graphene and hollow carbon), is focused on. The importance of proper structural and compositional control on the enhanced electrochemical properties of MSHNs is emphasized. A relationship between structural and compositional engineering with improved electrochemical activity of MSHNs is sought, in order to shed some light on future electrode design trends for next‐generation EES technologies.  相似文献   

4.
Currently, tremendous efforts are being devoted to develop high‐performance electrochemical energy‐storage materials and devices. Conventional electrochemical energy‐storage systems are confronted with great challenges to achieve high energy density, long cycle‐life, excellent biocompatibility and environmental friendliness. The biological energy metabolism and storage systems have appealing merits of high efficiency, sophisticated regulation, clean and renewability, and the rational design and fabrication of advanced electrochemical energy‐storage materials and smart devices inspired by nature have made some breakthrough progresses, recently. In this review, we summarize the latest developments in the field of nature‐inspired electrochemical energy‐storage materials and devices. Specifically, the nature‐inspired exploration, preparation and modification of electrochemical energy‐storage related materials including the active materials, binders, and separators are introduced. Furthermore, nature‐inspired design and fabrication of smart energy‐storage devices such as self‐healing supercapacitors, supercapacitors with ultrahigh operating voltage, and self‐rechargeable batteries are also discussed. The review aims to provide insights and expanded research perspectives for further study in this exciting field based on our comprehensive discussions.  相似文献   

5.
Transition metal sulfides, as an important class of inorganics, can be used as excellent electrode materials for various types of electrochemical energy storage, such as lithium‐ion batteries, sodium‐ion batteries, supercapacitors, and others. Recent works have identified that mixing graphene or graphene derivatives with transition metal sulfides can result in novel composites with better electrochemical performance. This review summarizes the latest advances in transition metal sulfide composites with graphene or graphene derivatives. The synthetic strategies and morphologies of these composites are introduced. The authors then discuss their applications in lithium‐ion batteries, sodium‐ion batteries, and supercapacitors. Finally, the authors give their personal viewpoints about the challenges and opportunities for the future development about this direction.  相似文献   

6.
7.
Energy storage devices are arousing increasing interest due to their key role in next‐generation electronics. Integration is widely explored as a general and effective strategy aiming at high performances. Recent progress in integrating a variety of functions into electrochemical energy storage devices is carefully described. Through integration at the level of materials: flexible, stretchable, responsive, and self‐healing devices are discussed to highlight the state‐of‐the‐art multi‐functional electronics. Through the integration at the level of devices, the incorporation of photovoltaic and piezoelectric devices is detailed to reflect the advances in self‐powering electronics. Integrated energy storage devices are presented for wearable applications to indicate a new growth direction. The main challenges and important directions are summarized to offer some useful clues for future development.  相似文献   

8.
Three‐dimensional (3D) printing, a layer‐by‐layer deposition technology, has a revolutionary role in a broad range of applications. As an emerging advanced fabrication technology, it has drawn growing interest in the field of electrochemical energy storage because of its inherent advantages including the freeform construction and controllable 3D structural prototyping. This article focuses on the topic of 3D‐printed electrochemical energy storage devices (EESDs), which bridge advanced electrochemical energy storage and future additive manufacturing. Basic 3D printing systems and material considerations are described to provide a fundamental understanding of printing technologies for the fabrication of EESDs. The performance metrics of 3D‐printed EESDs are then given and the related performance optimization strategies are discussed. Next, the recent advances of 3D‐printed EESDs, including sandwich‐type and in‐plane architectures, are summarized. Conclusions and future perspectives with some unique challenges and important directions are then discussed. It can be expected that, with the help of 3D printing technology, the development of advanced electrochemical energy storage systems will be greatly promoted.  相似文献   

9.
10.
Electrochemical energy storage is of extraordinary importance for fulfilling the utilization of renewable and sustainable energy sources. There is an increasing demand for energy storage devices with high energy and power densities, prolonged stability, safety, and low cost. In the past decade, numerous research efforts have been devoted to achieving these requirements, especially in the design of advanced electrode materials. Hollow carbon spheres (HCS) derived nanomaterials combining the advantages of 3D HCS and porous structures have been considered as alternative electrode materials for advanced energy storage applications, due to their unique features such as high surface‐to‐volume ratios, encapsulation capability, together with outstanding chemical and thermal stability. In this review, the authors first present a comprehensive overview of the synthetic strategies of HCS, and elucidate the design and synthesis of HCS‐derived nanomaterials including various types of HCS and their nanohybrids. Additionally, their significant roles as electrode materials for supercapacitors, lithium‐ion or sodium‐ion batteries, and sulfur hosts for lithium sulfur batteries are highlighted. Finally, current challenges in the synthesis of HCS and future directions in HCS‐derived nanomaterials for energy storage applications are proposed.  相似文献   

11.
Lithium‐ion batteries (LIBs) with outstanding energy and power density have been extensively investigated in recent years, rendering them the most suitable energy storage technology for application in emerging markets such as electric vehicles and stationary storage. More recently, sodium, one of the most abundant elements on earth, exhibiting similar physicochemical properties as lithium, has been gaining increasing attention for the development of sodium‐ion batteries (SIBs) in order to address the concern about Li availability and cost—especially with regard to stationary applications for which size and volume of the battery are of less importance. Compared with traditional intercalation reactions, conversion reaction‐based transition metal oxides (TMOs) are prospective anode materials for rechargeable batteries thanks to their low cost and high gravimetric specific capacities. In this review, the recent progress and remaining challenges of conversion reactions for LIBs and SIBs are discussed, covering an overview about the different synthesis methods, morphological characteristics, as well as their electrochemical performance. Potential future research directions and a perspective toward the practical application of TMOs for electrochemical energy storage are also provided.  相似文献   

12.
The ion insertion properties of MoS2 continue to be of widespread interest for energy storage. While much of the current work on MoS2 has been focused on the high capacity four‐electron reduction reaction, this process is prone to poor reversibility. Traditional ion intercalation reactions are highlighted and it is demonstrated that ordered mesoporous thin films of MoS2 can be utilized as a pseudocapacitive energy storage material with a specific capacity of 173 mAh g?1 for Li‐ions and 118 mAh g?1 for Na‐ions at 1 mV s?1. Utilizing synchrotron grazing incidence X‐ray diffraction techniques, fast electrochemical kinetics are correlated with the ordered porous structure and with an iso‐oriented crystal structure. When Li‐ions are utilized, the material can be charged and discharged in 20 seconds while still achieving a specific capacity of 140 mAh g?1. Moreover, the nanoscale architecture of mesoporous MoS2 retains this level of lithium capacity for 10 000 cycles. A detailed electrochemical kinetic analysis indicates that energy storage for both ions in MoS2 is due to a pseudocapacitive mechanism.  相似文献   

13.
Early demonstrations of wearable devices have driven interest in flexible lithium‐ion batteries. Previous demonstrations of flexible lithium‐ion batteries trade off between low areal capacity, poor mechanical flexibility and/or high thickness of inactive components. Here, a reinforced electrode design is used to support the active layers of the battery and a freestanding carbon nanotube (CNT) layer is used as the current collector. The supported architecture helps to increase the areal capacity (mAh cm‐2) of the battery and improve the tensile strength and mechanical flexibility of the electrodes. Batteries based on lithium cobalt oxide and lithium titanate oxide shows excellent electrochemical and mechanical performance. The battery has an areal capacity of ≈1 mAh cm‐2 and a capacity retention of around 94% after cycling the battery for 450 cycles at a C/2 rate. The reinforced electrode has a tensile strength of ≈5.5–7.0 MPa and shows excellent capacity retention after repeatedly flexing to a bending radius ranging from 45 to 10 mm. The relationships between mechanical flexing, electrochemical performance, and mechanical integrity of the battery are studied using electrochemical cycling, electron microscopy, and electrochemical impedance spectroscopy (EIS).  相似文献   

14.
The global energy demand is increasing at the same time as fossil fuel resources are dwindling. Consequently, the search for alternative energy sources is a major topic worldwide. Solar energy is one of the most promising, effective and emission‐free energy sources. However, the energy has to be stored to compensate the fluctuating availability of the sun and the actual energy demand. Photo‐rechargeable electric energy storage systems may solve this problem by immediately storing the generated electricity. Different combinations of solar cells and storage devices are possible. High efficiencies can be achieved by the combination of dye‐sensitized solar cells (DSSC) and capacitors. However, other hybrid devices including DSSCs or organic photovoltaic systems and redox flow batteries, lithium ion batteries and metal air batteries are playing an increasing role in this research field. This Progress Report reviews the state of the art research of photo‐rechargeable batteries based on organic solar cells, as well as storage modules.  相似文献   

15.
This study presents a battery concept with a “mediator‐ion” solid electrolyte for the development of next‐generation electrochemical energy storage technologies. The active anode and cathode materials in a single cell can be in the solid, liquid, or gaseous form, which are separated by a sodium‐ion solid‐electrolyte separator. The uniqueness of this mediator‐ion strategy is that the redox reactions at the anode and the cathode are sustained by a shuttling of a mediator sodium ion between the anolyte and the catholyte through the solid‐state electrolyte. Use of the solid‐electrolyte separator circumvents the chemical‐crossover problem between the anode and the cathode, overcomes the dendrite‐problem when employing metal‐anodes, and offers the possibility of using different liquid electrolytes at the anode and the cathode in a single cell. The battery concept is demonstrated with two low‐cost metal anodes (zinc and iron), two liquid cathodes (bromine and potassium ferricyanide), and one gaseous cathode (air/O2) with a sodium‐ion solid electrolyte. This novel battery strategy with a mediator‐ion solid electrolyte is applicable to a wide range of electrochemical energy storage systems with a variety of cathodes, anodes, and mediator‐ion solid electrolytes.  相似文献   

16.
An ordered network of interconnected tin oxide (SnO2) nanoparticles with a unique 3D architecture and an excellent lithium‐ion (Li‐ion) storage performance is derived for the first time through hydrolysis and thermal self‐assembly of the solid alkoxide precursor. Mesoporous anodes composed of these ≈9 nm‐sized SnO2 particles exhibit substantially higher specific capacities, rate performance, coulombic efficiency, and cycling stabilities compared with disordered nanoparticles and commercial SnO2. A discharge capacity of 778 mAh g–1, which is very close to the theoretical limit of 781 mAh g–1, is achieved at a current density of 0.1 C. Even at high rates of 2 C (1.5 A g–1) and 6 C (4.7 A g–1), these ordered SnO2 nanoparticles retain stable specific capacities of 430 and 300 mAh g–1, respectively, after 100 cycles. Interconnection between individual nanoparticles and structural integrity of the SnO2 electrodes are preserved through numerous charge–discharge process cycles. The significantly better electrochemical performance of ordered SnO2 nanoparticles with a tap density of 1.60 g cm–3 is attributed to the superior electrode/electrolyte contact, Li‐ion diffusion, absence of particle agglomeration, and improved strain relaxation (due to tiny space available for the local expansion). This comprehensive study demonstrates the necessity of mesoporosity and interconnection between individual nanoparticles for improving the Li‐ion storage electrochemical performance of SnO2 anodes.  相似文献   

17.
Batteries have become fundamental building blocks for the mobility of modern society. Continuous development of novel battery chemistries and electrode materials has nourished progress in building better batteries. Simultaneously, novel device form factors and designs with multi‐functional components have been proposed, requiring batteries to not only integrate seamlessly to these devices, but to also be a multi‐functional component for a multitude of applications. Thus, in the past decade, along with developments in the component materials, the focus has been shifting more and more towards novel fabrication processes, unconventional configurations, and additional functionalities. This work attempts to critically review the developments with respect to emerging electrochemical energy storage configurations, including, amongst others, paintable, transparent, flexible, wire or cable shaped, ultra‐thin and ultra‐thick configurations, as well as hybrid energy storage‐conversion, or graphene‐incorporated batteries and supercapacitors. The performance requirements are elaborated together with the advantages, but also the limitations, with respect to established electrochemical energy storage technologies. Finally, challenges in developing novel materials with tailored properties that would allow such configurations, and in designing easier manufacturing techniques that can be widely adopted are considered.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号