首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium‐metal chloride batteries, ZEBRA, are considered one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium–nickel chloride (Na–NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). Here, a novel intermediate‐temperature sodium–iron chloride (Na–FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur‐based additives in Fe cathode enables Na–FeCl2 batteries can be assembled in the discharged state and operated at intermediate temperature (<200 °C). The results presented demonstrate that intermediate‐temperature Na–FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na–NiCl2 chemistry.  相似文献   

2.
A rechargeable battery that uses sulfur at the cathode and a metal (e.g., Li, Na, Mg, or Al) at the anode provides perhaps the most promising path to a solid‐state, rechargeable electrochemical storage device capable of high charge storage capacity. It is understood that solubilization in the electrolyte and loss of sulfur in the form of long‐chain lithium polysulfides (Li2Sx, 2 < x < 8) has hindered development of the most studied of these devices, the rechargeable Li‐S battery. Beginning with density‐functional calculations of the structure and interactions of a generic lithium polysulfide species with nitrile containing molecules, it is shown that it is possible to design nitrile‐rich molecular sorbents that anchor to other components in a sulfur cathode and which exert high‐enough binding affinity to Li2Sx to limit its loss to the electrolyte. It is found that sorbents based on amines and imidazolium chloride present barriers to dissolution of long‐chain Li2Sx and that introduction of as little as 2 wt% of these molecules to a physical sulfur‐carbon blend leads to Li‐S battery cathodes that exhibit stable long‐term cycling behaviors at high and low charge/discharge rates.  相似文献   

3.
New energy storage and conversion systems require large‐scale, cost‐effective, good safety, high reliability, and high energy density. This study demonstrates a low‐cost and safe aqueous rechargeable lithium‐nickel (Li‐Ni) battery with solid state Ni(OH)2/NiOOH redox couple as cathode and hybrid electrolytes separated by a Li‐ion‐conductive solid electrolyte layer. The proposed aqueous rechargeable Li‐Ni battery exhibits an approximately open‐circuit potential of 3.5 V, outperforming the theoretic stable window of water 1.23 V, and its energy density can be 912.6 W h kg‐1, which is much higher than that of state‐of‐the‐art lithium ion batteries. The use of a solid‐state redox couple as cathode with a metallic lithium anode provides another postlithium chemistry for practical energy storage and conversion.  相似文献   

4.
The traditional Zn/MnO2 battery has attracted great interest due to its low cost, high safety, high output voltage, and environmental friendliness. However, it remains a big challenge to achieve long‐term stability, mainly owing to the poor reversibility of the cathode reaction. Different from previous studies where the cathode redox reaction of MnO2/MnOOH is in solid state with limited reversibility, here a new aqueous rechargeable Zn/MnO2 flow battery is constructed with dissolution–precipitation reactions in both cathodes (Mn2+/MnO2) and anodes (Zn2+/Zn), which allow mixing of anolyte and catholyte into only one electrolyte and remove the requirement for an ion selective membrane for cost reduction. Impressively, this new battery exhibits a high discharge voltage of ≈1.78 V, good rate capability (10C discharge), and excellent cycling stability (1000 cycles without decay) at the areal capacity ranging from 0.5 to 2 mAh cm‐2. More importantly, this battery can be readily enlarged to a bench scale flow cell of 1.2 Ah with good capacity retention of 89.7% at the 500th cycle, displaying great potential for large‐scale energy storage.  相似文献   

5.
Due to an ever‐increasing demand for electronic devices, rechargeable batteries are attractive for energy storage systems. A novel rechargeable aluminum‐ion battery based on Al3+ intercalation and deintercalation is fabricated with Ni3S2/graphene microflakes composite as cathode material and high‐purity Al foil as anode. This kind of aluminum‐ion battery comprises of an electrolyte containing AlCl3 in an ionic liquid of 1‐ethyl‐3‐methylimidazolium chloride ([EMIm]Cl). Galvanostatic charge/discharge measurements have been performed in a voltage range of 0.1–2.0 V versus Al/AlCl4 ?. An initial discharge specific capacity of 350 mA h g?1 at a current density of 100 mA g?1 is achieved, and the discharge capacity remains over 60 mA h g?1 and coulombic efficiency of 99% after 100 cycles. Typically, for the current density at 200 mA g?1, the initial charge and discharge capacities are 300 and 235 mA h g?1, respectively. More importantly, it should be emphasized that the battery has a high discharge voltage plateau (≈1.0 V vs Al/AlCl4 ?). These meaningful results represent a significant step forward in the development of aluminum‐ion batteries.  相似文献   

6.
Pliable, safe, and inexpensive energy storage devices are in demand to power modern flexible electronics. In this work, a foldable battery based on a solid‐state and rechargeable Zn‐air battery is introduced. The air cathode is prepared by coating graphene flakes on pretreated carbon cloth to form a dense, interconnected, and conducting carbon network. Manganese oxide hierarchical nanostructures are subsequently grown on the large surface area carbon network, leading to high loading of active catalyst per unit volume while maintaining the mechanical and electrical integrity of the air cathode. Solid‐state and rechargeable Zn‐air battery with such air cathode exhibits similar polarization curve and resistance at its flat and folded states. The folded battery is able to deliver a power density as high as ≈32 mW cm?2 and good cycling stability of up to 110 cycles. In addition, the flat battery shows similar discharge/charge curve and stable cycling performance after 100 times of repeated folding and unfolding, indicating its high mechanical robustness.  相似文献   

7.
Fiber‐shaped aqueous rechargeable Zn batteries (FARZBs) show flexibility, good reliability, cost‐effectiveness, high energy/power densities, and high safety that have attracted increasing attention as promising energy storage devices for future wearable applications. However, the development of FARZB is limited by its poor cycling life and inferior charge–discharge performance, mainly suffering from zinc dendrite growth and increasing electrode irreversibility. In this work, dendrite‐free fiber‐shaped Zn//Co3O4 rechargeable batteries with a long cycle life tested in water and air, are obtained via tuning the surface binding energy of Zn on the anode using the zincophilic N,O‐functional carbon fiber, as well as engineering the Co3O4 cathode with a nanowire array structure. The fiber‐shaped Zn//Co3O4 full battery demonstrates remarkable long cycle life in water and air with high energy density, impressive flexibility, and excellent waterproof ability (fully immersed and charged/discharged under water for more than 33 h for 3000 cycles with capacity retention of ≈80%). The reversible electrochemical mechanisms of the FARZBs, without obvious zinc dendrite deposits and structural change of Co3O4 nanowires, are confirmed by a series of characterizations. These results demonstrate that the FARZBs are promising power sources for emerging wearable electronics.  相似文献   

8.
Selenium–sulfur solid solutions are a class of potential cathode materials for high energy batteries, since they have higher theoretical capacities than selenium and improved conductivity over sulfur. Here, a high‐performance cathode material by confining 70 wt% of SeS2 in a highly ordered mesoporous carbon (CMK‐3) framework with a polydopamine (PDA) protection sheath for novel Li–Se/S batteries is reported. With a relatively high SeS2 mass loading of 2.6–3 mg cm?2, the CMK‐3/SeS2@PDA cathode exhibits a high capacity of >1200 mA h g?1 at 0.2 A g?1, excellent C‐rate capability of 535 mA h g?1 at 5 A g?1, and prolonged life over 500 cycles. Benefitting from the unique advantages of SeS2 and the rationally designed host framework, this new cathode material demonstrates a feasible strategy to overcome the bottlenecks of current Li–S systems for high energy density rechargeable batteries.  相似文献   

9.
A cathode‐flow lithium‐iodine (Li–I) battery is proposed operating by the triiodide/iodide (I3?/I?) redox couple in aqueous solution. The aqueous Li–I battery has noticeably high energy density (≈0.28 kWh kg?1cell) because of the considerable solubility of LiI in aqueous solution (≈8.2 m ) and reasonably high power density (≈130 mW cm?2 at a current rate of 60 mA cm?2, 328 K). In the operation of cathode‐flow mode, the Li–I battery attains high storage capacity (≈90% of the theoretical capacity), Coulombic efficiency (100% ± 1% in 2–20 cycles) and cyclic performance (>99% capacity retention for 20 cycles) up to total capacity of 100 mAh.  相似文献   

10.
The migration of zinc‐ion batteries from alkaline electrolyte to neutral or mild acidic electrolyte promotes research into their flexible applications. However, discharge voltage of many reported zinc‐ion batteries is far from satisfactory. On one hand, the battery voltage is substantially restricted by the narrow voltage window of aqueous electrolytes. On the other hand, many batteries yield a low‐voltage discharge plateau or show no plateau but capacitor‐like sloping discharge profiles. This impacts the battery's practicability for flexible electronics where stable and consistent high energy is needed. Herein, an aqueous zinc hybrid battery based on a highly concentrated dual‐ion electrolyte and a hierarchically structured lithium‐ion‐intercalative LiVPO4F cathode is developed. This hybrid battery delivers a flat and high‐voltage discharge plateau of nearly 1.9 V, ranking among the highest reported values for all aqueous zinc‐based batteries. The resultant high energy density of 235.6 Wh kg?1 at a power density of 320.8 W kg?1 also outperforms most reported zinc‐based batteries. A designed solid‐state and long‐lasting hydrogel electrolyte is subsequently applied in the fabrication of a flexible battery, which can be integrated into various flexible devices as powerful energy supply. The idea of designing such a hybrid battery offers a new strategy for developing high‐voltage and high‐energy aqueous energy storage systems.  相似文献   

11.
An innovative and environmentally friendly battery chemistry is proposed for high power applications. A carbon‐coated ZnFe2O4 nanoparticle‐based anode and a LiFePO4‐multiwalled carbon nanotube‐based cathode, both aqueous processed with Na‐carboxymethyl cellulose, are combined, for the first time, in a Li‐ion full cell with exceptional electrochemical performance. Such novel battery shows remarkable rate capabilities, delivering 50% of its nominal capacity at currents corresponding to ≈20C (with respect to the limiting cathode). Furthermore, the pre‐lithiation of the negative electrode offers the possibility of tuning the cell potential and, therefore, achieving remarkable gravimetric energy and power density values of 202 Wh kg?1 and 3.72 W kg?1, respectively, in addition to grant a lithium reservoir. The high reversibility of the system enables sustaining more than 10 000 cycles at elevated C‐rates (≈10C with respect to the LiFePO4 cathode), while retaining up to 85% of its initial capacity.  相似文献   

12.
Calcium represents a promising anode for the development of high‐energy‐density, low‐cost batteries. However, a lack of suitable electrolytes has restricted the development of rechargeable batteries with a Ca anode. Furthermore, to achieve a high energy density system, sulfur would be an ideal cathode to couple with the Ca anode. Unfortunately, a reversible calcium‐sulfur (Ca‐S) battery has not yet been reported. Herein, a basic study of a reversible nonaqueous room‐temperature Ca‐S battery is presented. The reversibility of the Ca‐S chemistry and high utilization of the sulfur cathode are enabled by employing a Li+‐ion‐mediated calcium‐based electrolyte. Mechanistic insights pursued by spectroscopic, electrochemical, microscopic, and theoretical simulation (density functional theory) investigations imply that the Li+‐ions in the Ca‐electrolyte stimulate the reactivation of polysulfide/sulfide species. The coordination of lithium to sulfur reduces the formation of sturdy Ca‐S ionic bonds, thus boosting the reversibility of the Ca‐S chemistry. In addition, the presence of Li+‐ions facilitates the ionic charge transfer both in the electrolyte and across the solid electrolyte interphase layer, consequently reducing the interfacial and bulk impedance of Ca‐S batteries. As a result, both the utilization of active sulfur in the cathode and the discharge voltage of Ca‐S batteries are significantly improved.  相似文献   

13.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

14.
Na‐based batteries have long been regarded as an inexpensive, sustainable candidate for large‐scale stationary energy storage applications. Unfortunately, the market penetration of conventional Na‐NiCl2 batteries is approaching its limit for several reasons, including limited rate capability and high Ni cost. Herein, a Na‐FeCl2 battery operating at 190 °C is reported that allows a capacity output of 116 mAh g?1 at an extremely high current density of 33.3 mA cm?2 (≈0.6C). The superior rate performance is rooted in the intrinsically fast kinetics of the Fe/Fe2+ redox reaction. Furthermore, it is demonstrated that a small amount of Ni additive (10 mol%) effectively mitigates capacity fading of the Fe/NaCl cathode caused by Fe particle pulverization during long‐term cycling. The modified Fe/Ni cathode exhibits excellent cycling stability, maintaining a discharge energy density of over 295 Wh kg?1 for 200 cycles at 10 mA cm?2 (≈C/5).  相似文献   

15.
Na‐ion capacitors have attracted extensive interest due to the combination of the merits of high energy density of batteries and high power density as well as long cycle life of capacitors. Here, a novel Na‐ion capacitor, utilizing TiO2@CNT@C nanorods as an intercalation‐type anode and biomass‐derived carbon with high surface area as an ion adsorption cathode in an organic electrolyte, is reported. The advanced architecture of TiO2@CNT@C nanorods, prepared by electrospinning method, demonstrates excellent cyclic stability and outstanding rate capability in half cells. The contribution of extrinsic pseudocapacitance affects the rate capability to a large extent, which is identified by kinetics analysis. A key finding is that ion/electron transfer dynamics of TiO2@CNT@C could be effectively enhanced due to the addition of multiwalled carbon nanotubes. Also, the biomass‐derived carbon with high surface area displays high specific capacity and excellent rate capability. Owing to the merits of structures and excellent performances of both anode and cathode materials, the assembled Na‐ion capacitors provide an exceptionally high energy density (81.2 W h kg?1) and high power density (12 400 W kg?1) within 1.0–4.0 V. Meanwhile, the Na‐ion capacitors achieve 85.3% capacity retention after 5000 cycles tested at 1 A g?1.  相似文献   

16.
Narrow electrochemical stability window (1.23 V) of aqueous electrolytes is always considered the key obstacle preventing aqueous sodium‐ion chemistry of practical energy density and cycle life. The sodium‐ion water‐in‐salt electrolyte (NaWiSE) eliminates this barrier by offering a 2.5 V window through suppressing hydrogen evolution on anode with the formation of a Na+‐conducting solid‐electrolyte interphase (SEI) and reducing the overall electrochemical activity of water on cathode. A full aqueous Na‐ion battery constructed on Na0.66[Mn0.66Ti0.34]O2 as cathode and NaTi2(PO4)3 as anode exhibits superior performance at both low and high rates, as exemplified by extraordinarily high Coulombic efficiency (>99.2%) at a low rate (0.2 C) for >350 cycles, and excellent cycling stability with negligible capacity losses (0.006% per cycle) at a high rate (1 C) for >1200 cycles. Molecular modeling reveals some key differences between Li‐ion and Na‐ion WiSE, and identifies a more pronounced ion aggregation with frequent contacts between the sodium cation and fluorine of anion in the latter as one main factor responsible for the formation of a dense SEI at lower salt concentration than its Li cousin.  相似文献   

17.
Redox flow batteries have considerable advantages of system scalability and operation flexibility over other battery technologies, which makes them promising for large‐scale energy storage application. However, they suffer from low energy density and consequently relatively high cost for a nominal energy output. Redox targeting–based flow batteries are employed by incorporating solid energy storage materials in the tank and present energy density far beyond the solubility limit of the electrolytes. The success of this concept relies on paring suitable redox mediators with solid materials for facilitated reaction kinetics and lean electrolyte composition. Here, a redox targeting‐based flow battery system using the NASICON‐type Na3V2(PO4)3 as a capacity booster for both the catholyte and anolyte is reported. With 10‐methylphenothiazine as the cathodic redox mediator and 9‐fluorenone as anodic redox mediator, an all‐organic single molecule redox targeting–based flow battery is developed. The anodic and cathodic capacity are 3 and 17 times higher than the solubility limit of respective electrolyte, with which a full cell can achieve an energy density up to 88 Wh L?1. The reaction mechanism is scrutinized by operando and in‐situ X‐ray and UV–vis absorption spectroscopy. The reaction kinetics are analysed in terms of Butler–Volmer formalism.  相似文献   

18.
The design of a sodium‐ion rechargeable battery with an antimony anode, a Na3V2(PO4)3 cathode, and a low‐cost composite gel‐polymer electrolyte based on cross‐linked poly(methyl methacrylate) is reported. The application of an antimony anode, on replacement of the sodium metal that is commonly used in sodium‐ion half‐cells, reduces significantly the interfacial resistance and charge transfer resistance of a sodium‐ion battery, which enables a smaller polarization for a sodium‐ion full‐cell Sb/Na3V2(PO4)3 running at relatively high charge and discharge rates. The incorporation of the gel‐polymer electrolyte is beneficial to maintain stable interfaces between the electrolyte and the electrodes of the sodium‐ion battery at elevated temperature. When running at 60 °C, the sodium‐ion full‐cell Sb/Na3V2(PO4)3 with the gel‐polymer electrolyte exhibits superior cycling stability compared to a battery with the conventional liquid electrolyte.  相似文献   

19.
Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. However, solid‐state batteries (SSBs) have been plagued by the relatively low ionic conductivity of SEs and large charge‐transfer resistance between electrode and SE. Here, a new design strategy is reported for improving the ionic conductivity of SE by self‐forming a composite material. An optimized Na+ ion conducting composite electrolyte derived from the Na1+ n Zr2Si n P3? n O12 NASICON (Na Super Ionic Conductor) structure is successfully synthesized, yielding ultrahigh ionic conductivity of 3.4 mS cm?1 at 25 °C and 14 mS cm?1 at 80 °C. On the other hand, in order to enhance the charge‐transfer rate at the electrode/electrolyte interface, an interface modification strategy is demonstrated by utilization of a small amount of nonflammable and nonvolatile ionic liquid (IL) at the cathode side in SSBs. The IL acts as a wetting agent, enabling a favorable interface kinetic in SSBs. The Na3V2(PO4)3/IL/SE/Na SSB exhibits excellent cycle performance and rate capability. A specific capacity of ≈90 mA h g?1 is maintained after 10 000 cycles without capacity decay under 10 C rate at room temperature. This provides a new perspective to design fast ion conductors and fabricate long life SSBs.  相似文献   

20.
The hybrid Mg2+/Li+ battery (MLIB) is a very promising energy storage technology that combines the advantage of the Li and Mg electrochemistry. However, previous research has shown that the battery performance is limited due to the strong dependence on the Li content in the dual Mg2+/Li+ electrolyte. This limitation can be circumvented by significantly improving the diffusion kinetics of Mg2+ in the electrode, so that both Li+ and Mg2+ ions can be utilized as charge carriers. Herein, a free‐standing interlayer expanded MoS2/graphene composite (E‐MG) is demonstrated as a cathode for MLIB. The key advantage of this cathode is to enable the efficient intercalation of both Mg2+ and Li+. The E‐MG electrode displays a reversible capacity of ≈300 mA h g?1 at 20 mA g?1 in an MLIB cell, corresponding to a specific energy density up to ≈316.9 W h kg?1, which is comparable to that of the state‐of‐the‐art Li‐ion batteries (LIBs) and has no dendrite formation. The composite electrode is stable against cycling with a coulombic efficiency close to 100% at 500 mA g?1. This new electrode design represents a significant step forward for building a safe and high‐density electrochemical energy storage system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号