首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time, environmentally friendly sulfur‐rich pyramidal MnS2 synthesized via a single‐step hydrothermal process is used as a high‐performance anode material in Li‐ion and Na‐ion batteries. The superior electrochemical performance of the MnS2 electrode along with its high compatibility with ether‐based electrolytes are analyzed in both half‐ and full‐cell configurations. The reversible capacities of ≈84 mAh g?1 and ≈74 mAh g?1 at a current density of 50 mA g?1 are retained in the Li‐ion and Na‐ion full‐cells, respectively, over 200 cycles with excellent capacity retentions. Moreover, important findings regarding activation processes in the presence of a new phase transition and protective electrolyte interphase layer are revealed using ab initio density function theory calculation and in situ potentio‐electrochemical impedance spectroscopy. The detailed complex redox mechanism of MnS2 in Li/Na half‐cells is also elucidated by ex situ X‐ray photoelectron spectroscopy.  相似文献   

2.
Over the last decade, Na‐ion batteries have been extensively studied as low‐cost alternatives to Li‐ion batteries for large‐scale grid storage applications; however, the development of high‐energy positive electrodes remains a major challenge. Materials with a polyanionic framework, such as Na superionic conductor (NASICON)‐structured cathodes with formula NaxM2(PO4)3, have attracted considerable attention because of their stable 3D crystal structure and high operating potential. Herein, a novel NASICON‐type compound, Na4MnCr(PO4)3, is reported as a promising cathode material for Na‐ion batteries that deliver a high specific capacity of 130 mAh g?1 during discharge utilizing high‐voltage Mn2+/3+ (3.5 V), Mn3+/4+ (4.0 V), and Cr3+/4+ (4.35 V) transition metal redox. In addition, Na4MnCr(PO4)3 exhibits a high rate capability (97 mAh g?1 at 5 C) and excellent all‐temperature performance. In situ X‐ray diffraction and synchrotron X‐ray diffraction analyses reveal reversible structural evolution for both charge and discharge.  相似文献   

3.
Dual‐ion battery (DIB) has been proposed as a novel energy storage device with the merits of high safety, low cost and environmental friendliness. Herein, we have developed core/shell aluminum@carbon nanospheres (nAl@C) as anode material for DIB. The nanoscale framework is composed of an Al nanosphere and an amorphous carbon outer layer that is conductive and protective, facilitating the formation of a stable SEI film during cycling. Owing to the core‐shell structural design, the nAl@C nanospheres demonstrate significantly enhanced electrochemical performance in a nAl@C‐graphite DIB. The DIB exhibites high rate performance as well as superior cycling stability with a capacity of 88 mA h g‐1 with 94.6% capacity retention and high Coulombic efficiency (> 99.5%) after 1000 cycles at a high current rate of 15 C. In addition, the nAl@C‐G DIB deliveres an ultrahigh specific energy of 148 W h kg‐1 at a high power density of 3701 W kg‐1, which is much better than most commercial lithium‐ion batteries.  相似文献   

4.
Hard carbon has long been considered the leading candidate for anode materials of Na‐ion batteries. Intensive research efforts have been carried out in the search of suitable carbon structure for an improved storage capability. Herein, an anode based on multishelled hollow carbon nanospheres, which are able to deliver an outstanding electrochemical performance with an extraordinary reversible capacity of 360 mAh g?1 at 30 mA g?1, is designed. An interesting dependence of the electrochemical properties on the multishelled structural features is identified: with an increase in the shell number of the model carbon materials, the sloping capacity in the charge/discharge curve remains almost unchanged while the plateau capacity continuously increases, suggesting an adsorption‐filling Na‐storage mechanism for the multishelled hollow hard carbon materials. The findings not only provide new perspective in the structural design of high‐performance anode materials, but also shed light on the complicated mechanism behind Na‐storage by hard carbon.  相似文献   

5.
The polyanion Li7V15O36(CO3) is a nanosized molecular cluster (≈1 nm in size), that has the potential to form an open host framework with a higher surface‐to‐bulk ratio than conventional transition metal oxide electrode materials. Herein, practical rechargeable Na‐ion batteries and symmetric Li‐ion batteries are demonstrated based on the polyoxovanadate Li7V15O36(CO3). The vanadium centers in {V15O36(CO3)} do not all have the same VIV/V redox potentials, which permits symmetric devices to be created from this material that exhibit battery‐like energy density and supercapacitor‐like power density. An ultrahigh specific power of 51.5 kW kg?1 at 100 A g?1 and a specific energy of 125 W h kg?1 can be achieved, along with a long cycling life (>500 cycles). Moreover, electrochemical and theoretical studies reveal that {V15O36(CO3)} also allows the transport of large cations, like Na+, and that it can serve as the cathode material for rechargeable Na‐ion batteries with a high specific capacity of 240 mA h g?1 and a specific energy of 390 W h kg?1 for the full Na‐ion battery. Finally, the polyoxometalate material from these electrochemical energy storage devices can be easily extracted from spent electrodes by simple treatment with water, providing a potential route to recycling of the redox active material.  相似文献   

6.
Searching for a new material to build the next‐generation rechargeable lithium‐ion batteries (LIBs) with high electrochemical performance is urgently required. Owing to the low‐cost, non‐toxicity, and high‐safety, the family of manganese oxide including the Na‐Mn‐O system is regarded as one of the most promising electrode materials for LIBs. Herein, a new strategy is carried out to prepare a highly porous and electrochemically active Na0.55Mn2O4·1.5H2O (SMOH) compound. As an anode material, the Na‐Mn‐O nanocrystal material dispersed within a carbon matrix manifests a high reversible capacity of 1015.5 mA h g?1 at a current density of 0.1 A g?1. Remarkably, a considerable capability of 546.8 mA h g?1 remains even after 2000 discharge/charge cycles at the higher current density of 4 A g?1, indicating a splendid cyclability. The exceptional electrochemical properties allow SMOH to be a promising anode material toward LIBs.  相似文献   

7.
In this work, an ether‐based electrolyte is adopted instead of conventional ester‐based electrolyte for an Sb2O3‐based anode and its enhancement mechanism is unveiled for K‐ion storage. The anode is fabricated by anchoring Sb2O3 onto reduced graphene oxide (Sb2O3‐RGO) and it exhibits better electrochemical performance using an ether‐based electrolyte than that using a conventional ester‐based electrolyte. By optimizing the concentration of the electrolyte, the Sb2O3‐RGO composite delivers a reversible specific capacity of 309 mAh g?1 after 100 cycles at 100 mA g?1. A high specific capacity of 201 mAh g?1 still remains after 3300 cycles (111 days) at 500 mA g?1 with almost no decay, exhibiting a longer cycle life compared with other metallic oxides. In order to further reveal the intrinsic mechanism, the energy changes for K atom migrating from surface into the sublayer of Sb2O3 are explored by density functional theory calculations. According to the result, the battery using the ether‐based electrolyte exhibits a lower energy change and migration barrier than those using other electrolytes for K‐ion, which is helpful to improve the K‐ion storage performance. It is believed that the work can provide deep understanding and new insight to enhance electrochemical performance using ether‐based electrolytes for KIBs.  相似文献   

8.
High‐performance and lost‐cost lithium‐ion and sodium‐ion batteries are highly desirable for a wide range of applications including portable electronic devices, transportation (e.g., electric vehicles, hybrid vehicles, etc.), and renewable energy storage systems. Great research efforts have been devoted to developing alternative anode materials with superior electrochemical properties since the anode materials used are closely related to the capacity and safety characteristics of the batteries. With the theoretical capacity of 2596 mA h g?1, phosphorus is considered to be the highest capacity anode material for sodium‐ion batteries and one of the most attractive anode materials for lithium‐ion batteries. This work provides a comprehensive study on the most recent advancements in the rational design of phosphorus‐based anode materials for both lithium‐ion and sodium‐ion batteries. The currently available approaches to phosphorus‐based composites along with their merits and challenges are summarized and discussed. Furthermore, some present underpinning issues and future prospects for the further development of advanced phosphorus‐based materials for energy storage/conversion systems are discussed.  相似文献   

9.
10.
The increase in electricity generation poses growing demands on energy storage systems, thus offering a chance for the success of the reliable and cost‐effective energy storage technologies. Sodium ion batteries are emerging as such a technology, which is however not yet mature enough to enter the market. At the crux of building practical sodium ion batteries is the development of electrode materials that promise sufficient cost‐ and performance‐competitiveness. As such, herein, all typical sodium storage materials are discussed, considering their fabrication methods and sodiation mechanisms in detail. A comprehensive cross‐literature and cross‐material comparison, which also includes the related thermodynamic analysis of their sodiation products, is also provided. The review focusses particularly on anodes and sodium‐free cathodes, as they both play the role of the acceptor rather than the donor of sodium ions in their operation in batteries; their difference lies in the (de‐)sodiation voltage. In the discussion, special attention is paid to contradictory observations and interpretations in contemporary sodium ion battery research, since debates on these controversies are likely to fuel future sodium battery research.  相似文献   

11.
12.
The urgent need for optimizing the available energy through smart grids and efficient large‐scale energy storage systems is pushing the construction and deployment of Li‐ion batteries in the MW range which, in the long term, are expected to hit the GW dimension while demanding over 1000 ton of positive active material per system. This amount of Li‐based material is equivalent to almost 1% of current Li consumption and can strongly influence the evolution of the lithium supply and cost. Given this uncertainty, it becomes mandatory to develop an energy storage technology that depends on almost infinite and widespread resources: Na‐ion batteries are the best technology for large‐scale applications. With small working cells in the market that cannot compete in cost ($/W h) with commercial Li‐ion batteries, the consolidation of Na‐ion batteries mainly depends on increasing their energy density and stability, the negative electrodes being at the heart of these two requirements. Promising Na‐based negative electrodes for large‐scale battery applications are reviewed, along with the study of the solid electrolyte interphase formed in the anode surface, which is at the origin of most of the stability problems.  相似文献   

13.
LiNixMnyCo1?x?yO2 (NMC) cathode materials with Ni ≥ 0.8 have attracted great interest for high energy‐density lithium‐ion batteries (LIBs) but their practical applications under high charge voltages (e.g., 4.4 V and above) still face significant challenges due to severe capacity fading by the unstable cathode/electrolyte interface. Here, an advanced electrolyte is developed that has a high oxidation potential over 4.9 V and enables NMC811‐based LIBs to achieve excellent cycling stability in 2.5–4.4 V at room temperature and 60 °C, good rate capabilities under fast charging and discharging up to 3C rate (1C = 2.8 mA cm?2), and superior low‐temperature discharge performance down to ?30 °C with a capacity retention of 85.6% at C/5 rate. It is also demonstrated that the electrode/electrolyte interfaces, not the electrolyte conductivity and viscosity, govern the LIB performance. This work sheds light on a very promising strategy to develop new electrolytes for fast‐charging high‐energy LIBs in a wide‐temperature range.  相似文献   

14.
15.
Thanks to low costs and the abundance of the resources, sodium‐ion (SIBs) and potassium‐ion batteries (PIBs) have emerged as leading candidates for next‐generation energy storage devices. So far, only few materials can serve as the host for both Na+ and K+ ions. Herein, a cubic phase CuSe with crystal‐pillar‐like morphology (CPL‐CuSe) assembled by the nanosheets are synthesized and its dual functionality in SIBs and PIBs is comprehensively studied. The electrochemical measurements demonstrate that CPL‐CuSe enables fast Na+ and K+ storage as well as the sufficiently long duration. Specifically, the anode delivers a specific capacity of 295 mA h g?1 at current density of 10 A g?1 in SIBs, while 280 mA h g?1 at 5 A g?1 in PIBs, as well as the high capacity retention of nearly 100% over 1200 cycles and 340 cycles, respectively. Remarkably, CPL‐CuSe exhibits a high initial coulombic efficiency of 91.0% (SIBs) and 92.4% (PIBs), superior to most existing selenide anodes. A combination of in situ X‐ray diffraction and ex situ transmission electron microscopy tests fundamentally reveal the structural transition and phase evolution of CuSe, which shows a reversible conversion reaction for both cells, while the intermediate products are different due to the sluggish K+ insertion reaction.  相似文献   

16.
17.
Considering the natural abundance and low cost of sodium resources, sodium‐ion batteries (SIBs) have received much attention for large‐scale electrochemical energy storage. However, smart structure design strategies and good mechanistic understanding are required to enable advanced SIBs with high energy density. In recent years, the exploration of advanced cathode, anode, and electrolyte materials, as well as advanced diagnostics have been extensively carried out. This review mainly focuses on the challenging problems for the attractive battery materials (i.e., cathode, anode, and electrolytes) and summarizes the latest strategies to improve their electrochemical performance as well as presenting recent progress in operando diagnostics to disclose the physics behind the electrochemical performance and to provide guidance and approaches to design and synthesize advanced battery materials. Outlook and perspectives on the future research to build better SIBs are also provided.  相似文献   

18.
Herein, a novel electrospun single‐ion conducting polymer electrolyte (SIPE) composed of nanoscale mixed poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) and lithium poly(4,4′‐diaminodiphenylsulfone, bis(4‐carbonyl benzene sulfonyl)imide) (LiPSI) is reported, which simultaneously overcomes the drawbacks of the polyolefin‐based separator (low porosity and poor electrolyte wettability and thermal dimensional stability) and the LiPF6 salt (poor thermal stability and moisture sensitivity). The electrospun nanofiber membrane (es‐PVPSI) has high porosity and appropriate mechanical strength. The fully aromatic polyamide backbone enables high thermal dimensional stability of es‐PVPSI membrane even at 300 °C, while the high polarity and high porosity ensures fast electrolyte wetting. Impregnation of the membrane with the ethylene carbonate (EC)/dimethyl carbonate (DMC) (v:v = 1:1) solvent mixture yields a SIPE offering wide electrochemical stability, good ionic conductivity, and high lithium‐ion transference number. Based on the above‐mentioned merits, Li/LiFePO4 cells using such a SIPE exhibit excellent rate capacity and outstanding electrochemical stability for 1000 cycles at least, indicating that such an electrolyte can replace the conventional liquid electrolyte–polyolefin combination in lithium ion batteries (LIBs). In addition, the long‐term stripping–plating cycling test coupled with scanning electron microscope (SEM) images of lithium foil clearly confirms that the es‐PVPSI membrane is capable of suppressing lithium dendrite growth, which is fundamental for its use in high‐energy Li metal batteries.  相似文献   

19.
The ever‐increasing demand for large‐scale energy storage systems requires novel battery technologies with low‐cost and sustainable properties. Due to earth‐abundance and cost effectiveness, the development of rechargeable potassium ion batteries (PIBs) has recently attracted much attention. Since carbon‐based materials are abundant, inexpensive, nontoxic, and safe, extensive feasibility investigations have suggested that they can become promising anode materials for PIBs. This review not only attempts to provide better understanding of the potassium storage mechanism, but also summarizes the availability of new carbon‐based materials and their electrochemical performance covering graphite, graphene, and hard carbon materials plus carbon‐based composites. Finally, the critical issues, challenges, and perspectives are discussed to demonstrate the developmental direction of PIBs.  相似文献   

20.
The development of advanced cathode materials for aqueous the zinc ion battery (ZIB) represents a crucial step toward building future large‐scale green energy conversion and storage systems. Recently, significant progress has been achieved in the development of manganese‐based oxides for ZIB via defect engineering, whereby the intrinsic capacity and energy density have been enhanced. In this review, an overview of the recent progress in the defect engineering of manganese‐based oxides for aqueous ZIBs is summarized in the following order: 1) the structures and properties of the commonly used manganese‐based oxides, 2) the classification of the various types of defect engineering commonly reported, 3) the various strategies used to create defects in materials, and 4) the effects of the various types of defect engineering on the electrochemical performance of manganese‐based oxides. Finally, a perspective on the defect engineering of manganese‐based oxides is proposed to further enhance their electrochemical performance as a ZIB cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号