首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
2.
To solve critical issues related to device stability and performance of perovskite solar cells (PSCs), FA0.026MA0.974PbI3?yCly‐Cu:NiO (formamidinium methylammonium (FAMA)‐perovskite‐Cu:NiO) and Al2O3/Cu:NiO composites are developed and utilized for fabrication of highly stable and efficient PSCs through fully‐ambient‐air processes. The FAMA‐perovskite‐Cu:NiO composite crystals prepared without using any antisolvents not only improve the perovskite film quality with large‐size crystals and less grain boundaries but also tailor optical and electronic properties and suppress charge recombination with reduction of trap density. A champion device based on the composites as light absorber and Al2O3/Cu:NiO interfacial layer between electron transport layer and active layer yields power conversion efficiency (PCE) of 20.67% with VOC of 1.047 V, JSC of 24.51 mA cm?2, and fill factor of 80.54%. More importantly, such composite‐based PSCs without encapsulation show significant enhancement in long‐term air‐stability, thermal‐ and photostability with retaining 97% of PCE over 240 d under ambient conditions (25–30 °C, 45–55% humidity).  相似文献   

3.
With the aim of developing a safe alternative to the KCN etchant for the removal of CuxSe secondary phases at the surface of Cu(In,Ga)Se2 (CIGSe) absorber, a method based on ammonium sulfide (AS) chemical treatment is proposed. Although lower etching rates are observed compared with the KCN reference solution, the AS solution is found to selectively etch CuxSe phases. In addition, it allows modifying the surface chemical state of the CIGSe absorber by incorporation of sulfur. As a consequence, the minority carrier lifetime located close to the surface of the absorber is found to be improved. Furthermore, it is demonstrated that optimizing the AS treatment time induces a remarkable enhancement in the electrical performances of the CIGSe‐based solar cells.  相似文献   

4.
5.
6.
The surface properties of CuInS2 (CIS) thin‐film solar cell absorbers are investigated by a combination of electron and soft X‐ray spectroscopies. Spatially separated regions of varying colors are observed and identified to be dominated by either CuS or Cu2S surface phases. After their removal by KCN etching, the samples cannot be distinguished by eye and the CIS surface is found to be Cu‐deficient in both regions. However, a significantly more pronounced off‐stoichiometry in the region initially covered by Cu2S can be identified. In this region, the resulting surface band gap is also significantly larger than the EgSurf of the initially CuS‐terminated region. Such variations may represent a hidden parameter which, if overlooked, induces irreproducibility and thus prevents systematic optimization efforts.  相似文献   

7.
8.
9.
Development of high‐performance donor–acceptor (D–A) copolymers is vital in the research of polymer solar cells (PSCs). In this work, a low‐bandgap D–A copolymer based on dithieno[3,2‐b:2′,3′‐d]pyridin‐5(4H)‐one unit (DTP), PDTP4TFBT, is developed and used as the donor material for PSCs with PC71BM or ITIC as the acceptor. PDTP4TFBT:PC71BM and PDTP4TFBT:ITIC solar cells give power conversion efficiencies (PCEs) up to 8.75% and 7.58%, respectively. 1,8‐Diiodooctane affects film morphology and device performance for fullerene and nonfullerene solar cells. It inhibits the active materials from forming large domains and improves PCE for PDTP4TFBT:PC71BM cells, while it promotes the aggregation and deteriorates performance for PDTP4TFBT:ITIC cells. The ternary‐blend cells based on PDTP4TFBT:PC71BM:ITIC (1:1.2:0.3) give a decent PCE of 9.20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号