首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO nanoparticles (NPs) with a granular morphology were synthesized using a hydrothermal method. Structural analysis revealed that ZnO NPs had a single crystal wurtzite hexagonal structure. Solvent polarity was responsible for varying and controlling their size and morphology. The process was very trouble free and scalable. In addition, it could be used for fundamental studies on tunable morphology formation. This hydrothermal method showed different morphology with different co‐surfactants such as a floral‐like or wire‐like belt sheet structures etc. Based on their surface morphology, the same material had different applications as a catalyst in various organic reactions and also could be used as a photocatalyst and fuel cell, solar cell or in semiconductors etc. X‐ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible spectroscopy and photoluminescence of the resulting product was performed to study its purity, morphology and size, plus its optical properties via measurement of band gap energy and light absorbance.  相似文献   

2.
Recently, a new method to effectively engineer the bandgap of barium bismuth niobate (BBNO) double perovskite was reported. However, the planar electrodes based on BBNO thin films show low photocurrent densities for water oxidation owing to their poor electrical conductivity. Here, it is reported that the photoelectrochemical (PEC) activity of BBNO‐based electrodes can be dramatically enhanced by coating thin BBNO layers on tungsten oxide (WO3) nanosheets to solve the poor conductivity issue while maintaining strong light absorption. The PEC activity of BBNO/WO3 nanosheet photoanodes can be further enhanced by applying Co0.8Mn0.2Ox nanoparticles as a co‐catalyst. A photocurrent density of 6.02 mA cm?2 at 1.23 V (vs reversible hydrogen electrode (RHE)) is obtained using three optically stacked, but electrically parallel, BBNO/WO3 nanosheet photoanodes. The BBNO/WO3 nanosheet photoanodes also exhibit excellent stability in a high‐pH alkaline solution; the photoanodes demonstrate negligible photocurrent density decay while under continuous PEC operation for more than 7 h. This work suggests a viable approach to improve the PEC performance of BBNO absorber‐based devices.  相似文献   

3.
2D metal organic frameworks (MOF) have received tremendous attention due to their organic–inorganic hybrid nature, large surface area, highly exposed active sites, and ultrathin thickness. However, the application of 2D MOF in light‐to‐hydrogen (H2) conversion is rarely reported. Here, a novel 2D MOF [Ni(phen)(oba)]n·0.5nH2O (phen = 1,10‐phenanthroline, oba = 4,4′‐oxybis(benzoate)) is for the first time employed as a general, high‐performance, and earth‐abundant platform to support CdS or Zn0.8Cd0.2S for achieving tremendously improved visible‐light‐induced H2‐production activity. Particularly, the CdS‐loaded 2D MOF exhibits an excellent H2‐production activity of 45 201 µmol h?1 g?1, even exceeding that of Pt‐loaded CdS by 185%. Advanced characterizations, e.g., synchrotron‐based X‐ray absorption near edge structure, and theoretical calculations disclose that the interactive nature between 2D MOF and CdS, combined with the high surface area, abundant reactive centers, and favorable band structure of 2D MOFs, synergistically contribute to this distinguished photocatalytic performance. The work not only demonstrates that the earth‐abundant 2D MOF can serve as a versatile and effective platform supporting metal sulfides to boost their photocatalytic H2‐production performance without noble‐metal co‐catalysts, but also paves avenues to the design and synthesis of 2D‐MOF‐based heterostructures for catalysis and electronics applications.  相似文献   

4.
Solution combustion synthesized ZnO nanoparticles that were Ce doped, Dy doped or co-doped at varying dopant concentrations were characterized for their microstructural, optical, and photoluminescence (PL) characteristics. The synthesized nanoparticles matched the standard hexagonal wurtzite structure of ZnO. The lattice fringes in the high-resolution transmission electron micrographs and the bright spotty rings in the selected area electron diffraction patterns authenticated the high crystallinity of the nanoparticles. The diffuse reflectance spectroscopy resolved the energy bandgap for the undoped ZnO as 3.18 eV, which decreased upon doping and co-doping. A sharp narrow ultraviolet emission peak at ~398 nm that originated from excitonic recombination was found in the PL spectra of the nanoparticles. The visible emission peaks in the PL spectra were assigned to the f–d and f–f electron transitions of Ce3+ and Dy3+ ions, respectively, in addition to different native defects in ZnO. The visible emissions (blue, yellow, and red) improved upon (Ce, Dy) co-doping, therefore (Ce, Dy) co-doped ZnO nanoparticles can be considered a promising luminescent material for the development of energy-saving light sources.  相似文献   

5.
Heterogeneous photocatalysis using semiconductors and renewable solar energy has been regarded as one of the most promising processes to alleviate, and even solve, both the world crises of energy supply and environmental pollution. In the past few years, many encouraging achievements have been made in the research area of graphene‐based semiconductor photocatalysts. Among them, CdS/graphene nanocomposites have attracted extensive attention as an important kind of photocatalyst in chemical and material science, due to its superior photocatalytic activity and photostability under visible‐light irradiation. The aim here is to address the enhancement mechanism of the photocatalytic performance of CdS/graphene composite photocatalysts, and systematically summarize recent progress regarding the design and synthesis of CdS/graphene nanocomposites. These nanocomposites are promising for a great diversity of applications in visible‐light photocatalytic fields, including artificial photosynthetic systems (photocatalytic hydrogen production and CO2 reduction), environmental remediation, and organic photosynthesis. Special attention is given to the photocatalytic hydrogen production and pollutant photodegradation over CdS/graphene nanocomposite photocatalysts. Furthermore, perspectives on CdS/graphene‐based materials are discussed, including the various remaining challenges for large‐scale applications, identifying prospective areas for related research in this field.  相似文献   

6.
The most important factors dominating solar hydrogen synthesis efficiency include light absorption, charge separation and transport, and surface chemical reactions (charge utilization). In order to tackle these factors, an ordered 1D junction cascade photoelectrode for water splitting, grown via a simple low‐cost solution‐based process and consisting of nanoparticulate BiVO4 on 1D ZnO rods with cobalt phosphate (Co‐Pi) on the surface is synthesized. Flat‐band measurements reveal the feasibility of charge transfer from BiVO4 to ZnO, supported by PL measurements and photocurrent observation in the presence of an efficient hole scavenger, which demonstrate that quenching of luminescence of BiVO4 and enhanced current are caused by electron transfer from BiVO4 to ZnO. A dramatic cathodic shift in onset potential under both visible and full arc irradiation, coupled with a 12‐fold increase in photocurrent (ca. 3 mA cm‐2) are observed compared to BiVO4, resulting in ≈47% IPCE at 410 nm (4% for BiVO4) with high solar energy conversion efficiency (0.88%). The reasons for these enhancements stem from enhanced light absorption and trapping, in situ rectifying electron transfer from BiVO4 to ZnO, hole transfer to Co‐Pi for water oxidation, and facilitating electron transport along 1D ZnO.  相似文献   

7.
In this communication, light harvesting and photoelectrochemical (PEC) hydrogen generation beyond the visible region are realized by an anisotropic plasmonic metal/semiconductor hybrid photocatalyst with precise control of their topology and heterointerface. Controlling the intended configuration of the photocatalytic semiconductor to anisotropic Au nanorods' plasmonic hot spots, through a water phase cation exchange strategy, the site‐selective overgrowth of a CdSe shell evolving from a core/shell to a nanodumbbell is realized successfully. Using this strategy, tip‐preferred efficient photoinduced electron/hole separation and plasmon enhancement can be realized. Thus, the PEC hydrogen generation activity of the Au/CdSe nanodumbbell is 45.29 µmol cm?2 h?1 (nearly 4 times than the core/shell structure) beyond vis (λ > 700 nm) illumination and exhibits a high faradic efficiency of 96% and excellent stability with a constant photocurrent for 5 days. Using surface photovoltage microscopy, it is further demonstrated that the efficient plasmonic hot charge spatial separation, which hot electrons can inject into CdSe semiconductors, leads to excellent performance in the Au/CdSe nanodumbbell.  相似文献   

8.
Plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon‐induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum‐doped bismuth vanadium oxide (Mo:BiVO4), regarded as one of the best metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time‐correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO4 at 1.23 V versus RHE by ≈2.2‐fold (2.83 mA cm?2).  相似文献   

9.
Dy3+‐doped ZnO nanofibres with diameters from 200 to 500 nm were made using an electrospinning technique. The as‐fabricated amorphous nanofibres resulted in good crystalline continuous nanofibres through calcination. Dy3+‐doped ZnO nanofibres were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), X‐ray diffraction (XRD), ultraviolet–visible (UV–vis) light spectroscopy, Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL). XRD showed the well defined peaks of ZnO. UV–vis spectra showed a good absorption band at 360 nm. FTIR spectra showed a Zn–O stretching vibration confirming the presence of ZnO. Photoluminescence spectra of Dy3+‐doped ZnO nanofibres showed an emission peak in the visible region that was free from any ZnO defect emission. Emissions at 480 nm and 575 nm in the Dy3+‐doped ZnO nanofibres were the characteristic peaks of dopant Dy3+ and implied efficient energy transfer from host to dopant. Luminescence intensity was found to be increased with increasing doping concentration and reduction in nanofibre diameter. Colour coordinates were calculated from photometric characterizations, which resembled the properties for warm white lighting devices.  相似文献   

10.
Aqueous rechargeable Ni‐Fe batteries featuring an ultra‐flat discharge plateau, low cost, and outstanding safety characteristics show promising prospects for application in wearable energy storage. In particular, fiber‐shaped Ni‐Fe batteries will enable textile‐based energy supply for wearable electronics. However, the development of fiber‐shaped Ni‐Fe batteries is currently challenged by the performance of fibrous Fe‐based anode materials. In this context, this study describes the fabrication of sulfur‐doped Fe2O3 nanowire arrays (S‐Fe2O3 NWAs) grown on carbon nanotube fibers (CNTFs) as an innovative anode material (S‐Fe2O3 NWAs/CNTF). Encouragingly, first‐principle calculations reveal that S‐doping in Fe2O3 can dramatically reduce the band gap from 2.34 to 1.18 eV and thus enhance electronic conductivity. The novel developed S‐Fe2O3 NWAs/CNTF electrode is further demonstrated to deliver a very high capacity of 0.81 mAh cm?2 at 4 mA cm?2. This value is almost sixfold higher than that of the pristine Fe2O3 NWAs/CNTF electrode. When a cathode containing zinc‐nickel‐cobalt oxide (ZNCO)@Ni(OH)2 NWAs heterostructures is used, 0.46 mAh cm?2 capacity and 67.32 mWh cm?3 energy density are obtained for quasi‐solid‐state fiber‐shaped NiCo‐Fe batteries, which outperform most state‐of‐the‐art fiber‐shaped aqueous rechargeable batteries. These findings offer an innovative and feasible route to design high‐performance Fe‐based anodes and may inspire new development for the next‐generation wearable Ni‐Fe batteries.  相似文献   

11.
The photophysics of bulk heterojunctions of a high‐performance, low‐gap silicon‐bridged dithiophene polymer with oleic acid capped PbS quantum dots (QDs) are studied to assess the material potential for light harvesting in the visible‐ and IR‐light ranges. By employing a wide range of nanocrystal sizes, systematic dependences of electron and hole transfer on quantum‐dot size are established for the first time on a low‐gap polymer–dot system. The studied system exhibits type II band offsets for dot sizes up to ca. 4 nm, whch allow fast hole transfer from the quantum dots to the polymer that competes favorably with the intrinsic QD recombination. Electron transfer from the polymer is also observed although it is less competitive with the fast polymer exciton recombination for most QD sizes studied. The incorporation of a fullerene derivative provides efficient electron‐quenching sites that improve interfacial polymer‐exciton dissociation in ternary polymer–fullerene–QD blends. The study indicates that programmable band offsets that allow both electron and hole extraction can be produced for efficient light harvesting based on this low‐gap polymer‐PbS QD composite.  相似文献   

12.
Core‐shell CdS/ZnS (Zn 0.025?0.125 M) and CdS:Cu2+(1%)/ZnS nanoparticles were successfully synthesized using a chemical method. X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR TEM), photoluminescence (PL) and UV/Visible (UV/Vis) techniques were used to characterize the novel CdS/ZnS and CdS:Cu2+/ZnS core–shell nanoparticles. All absorption peaks of the synthesized samples were highly blue‐shifted from the bulk CdS and ZnS. Very narrow and symmetric PL emission was observed in the yellow region for core–shell CdS/ZnS. Furthermore, the PL emission of CdS/ZnS was tuned into orange region by incorporate the Cu ion into the core CdS lattice. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, CdSe quantum dots (QDs) were synthesized by a simple and rapid microwave activated approach using CdSO4, Na2SeO3 as precursors and thioglycolic acid (TGA) as capping agent molecule. A novel photochemical approach was introduced for the growth of CdS QDs and this approach was used to grow a CdS shell around CdSe cores for the formation of a CdSe/CdS core–shell structure. The core–shells were structurally verified using X‐ray diffraction, transmission electron microscopy and FTIR (Fourier‐transform infrared (FTIR)) spectroscopy. The optical properties of the samples were examined by means of UV–Vis and photoluminescence (PL) spectroscopy. It was found that CdS QDs emit a broad band white luminescence between 400 to 700 nm with a peak located at about 510 nm. CdSe QDs emission contained a broad band resulting from trap states between 450 to 800 nm with a peak located at 600 nm. After CdS shell growth, trap states emission was considerably quenched and a near band edge emission was appeared about 480 nm. Optical studies revealed that the core–shell QDs possess strong ultraviolet (UV) ? visible light photocatalytic activity. CdSe/CdS core–shell QDs, showed an enhancement in photodegradation of Methyl orange (MO) compared with CdSe QDs.  相似文献   

14.
Strong interest exists in the development of organic–inorganic lead halide perovskite photovoltaics and of photoelectrochemical (PEC) tandem absorber systems for solar fuel production. However, their scalability and durability have long been limiting factors. In this work, it is revealed how both fields can be seamlessly merged together, to obtain scalable, bias‐free solar water splitting tandem devices. For this purpose, state‐of‐the‐art cesium formamidinium methylammonium (CsFAMA) triple cation mixed halide perovskite photovoltaic cells with a nickel oxide (NiOx) hole transport layer are employed to produce Field's metal‐epoxy encapsulated photocathodes. Their stability (up to 7 h), photocurrent density (–12.1 ± 0.3 mA cm?2 at 0 V versus reversible hydrogen electrode, RHE), and reproducibility enable a matching combination with robust BiVO4 photoanodes, resulting in 0.25 cm2 PEC tandems with an excellent stability of up to 20 h and a bias‐free solar‐to‐hydrogen efficiency of 0.35 ± 0.14%. The high reliability of the fabrication procedures allows scaling of the devices up to 10 cm2, with a slight decrease in bias‐free photocurrent density from 0.39 ± 0.15 to 0.23 ± 0.10 mA cm?2 due to an increasing series resistance. To characterize these devices, a versatile 3D‐printed PEC cell is also developed.  相似文献   

15.
The need for cost‐effective and sustainable power supplies has spurred a growing interest in hybrid energy harvesting systems, and the most elementary energy production process relies on intermittent solar power. Here, it is shown how the ambient mechanical energy leads to water splitting in a photoelectrochemical (PEC) cell boosted by a triboelectric nanogenerator (TENG). In this strategy, a flexible TENG collects and transforms mechanical energy into electric current, which boosts the PEC water splitting via the charged Li‐ion battery. Au nanoparticles are deposited on TiO2 nanoarrays for extending the available light spectrum to visible part by surface plasmon resonance effect, which yields a photocurrent density of 1.32 mA cm?2 under AM 1.5 G illumination and 0.12 mA cm?2 under visible light with a bias of 0.5 V. The TENG‐charged battery boosts the water splitting performance through coupling electrolysis and enhanced electron–hole separation efficiency. The hybrid cell exhibits an instantaneous current more than 9 mA with a working electrode area of 0.3 cm2, suggesting a simple but efficient route for simultaneously converting solar radiation and mechanical energy into hydrogen.  相似文献   

16.
State‐of‐the‐art water‐oxidation catalysts (WOCs) in acidic electrolytes usually contain expensive noble metals such as ruthenium and iridium. However, they too expensive to be implemented broadly in semiconductor photoanodes for photoelectrochemical (PEC) water splitting devices. Here, an Earth‐abundant CoFe Prussian blue analogue (CoFe‐PBA) is incorporated with core–shell Fe2O3/Fe2TiO5 type II heterojunction nanowires as composite photoanodes for PEC water splitting. Those deliver a high photocurrent of 1.25 mA cm?2 at 1.23 V versus reversible reference electrode in acidic electrolytes (pH = 1). The enhancement arises from the synergic behavior between the successive decoration of the hematite surface with nanolayers of Fe2TiO5 and then, CoFe‐PBA. The underlying physical mechanism of performance enhancement through formation of the Fe2O3/Fe2TiO5/CoFe‐PBA heterostructure reveals that the surface states’ electronic levels of hematite are modified such that an interfacial charge transfer becomes kinetically favorable. These findings open new pathways for the future design of cheap and efficient hematite‐based photoanodes in acidic electrolytes.  相似文献   

17.
The efficiency of polymer – metal oxide hybrid solar cells depends critically on the intimacy of mixing of the two semiconductors. The effect of side chain functionalization on the morphology and performance of conjugated polymer:ZnO solar cells is investigated. Using an ester‐functionalized side chain poly(3‐hexylthiophene‐2,5‐diyl) derivative (P3HT‐E), the nanoscale morphology of ZnO:polymer solar cells is significantly more intimately mixed compared to ZnO:poly(3‐hexylthiophene‐2,5‐diyl) (ZnO:P3HT), as evidenced experimentally from a 3D reconstruction of the phase separation using electron tomography. Photoinduced absorption reveals nearly quantitative charge generation for the ZnO:P3HT‐E blend but not for ZnO:P3HT, consistent with the results obtained from solving the 3D diffusion equation for excitons formed in the polymer within the two experimental ZnO morphologies. For thin ZnO:P3HT‐E active layers (~50 nm) this yields a significant improvement of the solar cell performance. For thicker cells, however, the reduced hole mobility and a reduced percolation of ZnO pathways hinders charge carrier collection, limiting the power conversion efficiency.  相似文献   

18.
“Giant” core/shell quantum dots (g‐QDs) are a promising class of materials for future optoelectronic technologies due to their superior chemical‐ and photostability compared to bare QDs and core/thin shell QDs. However, inadequate light absorption in the visible and near‐infrared (NIR) region and frequent use of toxic heavy metals (e.g., Cd and Pb) are still major challenges for most g‐QDs (e.g., CdSe/CdS) synthesized to date. The synthesis of NIR, heavy metal‐free, Zn‐treated spherical CuInSe2/CuInS2 g‐QDs is reported using the sequential cation exchange method. These g‐QDs exhibit tunable NIR optical absorption and photoluminescence (PL) properties. Transient fluorescence spectroscopy shows prolonged lifetime with increasing shell thickness, indicating the formation of quasi type‐II band alignment, which is further confirmed by simulations. As a proof‐of‐concept, as‐synthesized g‐QDs are used to sensitize TiO2 as a photoanode in a photoelectrochemical (PEC) cell, demonstrating an efficient and stable PEC system. These results pave the way toward synthesizing NIR heavy metal‐free g‐QDs, which are very promising components of future optoelectronic technologies.  相似文献   

19.
The scalable synthesis of highly transparent and robust sub‐monolayers of Co3O4 nano‐islands, which efficiently catalyze water oxidation, is reported. Rapid aerosol deposition of Co3O4 nanoparticles and thermally induced self‐organization lead to an ultra‐fine nano‐island morphology with more than 94% light transmission at a wavelength of 500 nm. These transparent sub‐monolayers demonstrate a remarkable mass‐weighted water oxidation activity of 2070–2350 A gCo3O4?1 and per‐metal turnover frequency of 0.38–0.62 s?1 at an overpotential of 400 mV in 1 m NaOH aqueous solution. This mixed valent cobalt oxide structure exhibits excellent long‐term electrochemical and mechanical stability preserving the initial catalytic activity over more than 12 h of constant current electrolysis and 1000 consecutive voltammetric cycles. The potential of the Co3O4 nano‐islands for photoelectrochemical water splitting has been demonstrated by incorporation of co‐catalysts in GaN nanowire photoanodes. The Co3O4‐GaN photoanodes reveal significantly reduced onset overpotentials, improved photoresponse and photostability compared to the bare GaN ones. These findings provide a highly performing catalyst structure and a scalable synthesis method for the engineering of efficient photoanodes for integrated solar water‐splitting cells.  相似文献   

20.
We evaluated the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) preilluminated with ultraviolet light on Escherichia coli and Bacillus subtilis. The experiments were conducted using three different types of light: visible, Ultraviolet A (UVA, 315–400 nm), and Ultraviolet B (UVB, 280–315 nm). The bacteria were exposed to NPs, either as liquid suspensions for growth inhibition assays or on agar plates for colony forming unit (CFU) assays. We found that the ZnO NPs were more toxic when preilluminated with UVA or UVB light than with visible light in both growth inhibition and CFU assays. TiO2 NPs were not toxic to the bacteria under UVA or UVB preillumination conditions. The photo-dissolution of ZnO NPs increased with UV preillumination, which could explain the observed toxicity of ZnO NPs. We detected oxidative stress elicited by photoactive nanoparticles by measuring superoxide dismutase activity. The results of this study show that the toxicity of photoactive nanoparticles can be increased by UV preillumination by dissolution of toxic ions, which suggests the potential for preillumination-dependent toxicity of nanoparticles on soil environments in low light or darkness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号