首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Electrochemical reduction of CO2 provides an opportunity to reach a carbon‐neutral energy recycling regime, in which CO2 emissions from fuel use are collected and converted back to fuels. The reduction of CO2 to CO is the first step toward the synthesis of more complex carbon‐based fuels and chemicals. Therefore, understanding this step is crucial for the development of high‐performance electrocatalyst for CO2 conversion to higher order products such as hydrocarbons. Here, atomic iron dispersed on nitrogen‐doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO2 reduction to CO. Fe/NG has a low reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen‐confined atomic Fe moieties on the nitrogen‐doped graphene layer is confirmed by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. The CO2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N4) embedded in nitrogen‐doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.  相似文献   

3.
Tailoring active sites in earth‐abundant non‐noble metal electrocatalysts are required toward widespread applications in sustainable energy fields. Herein, an integrated mesoporous heterostructure array is reported by a hydrogenation/nitridation‐induced in situ growth strategy. Highly conductive oxygen‐vacancies‐rich tungsten oxynitride (Vo‐WON) nanorod array acts as the backbone encapsulated by ultrathin nitrogen‐doped carbon (NC) nanolayers, forming high‐quality shell/core NC/Vo‐WON heterostructures. Density functional theory calculations reveal that defect‐rich heterostructure arrays not only enhance the conductivity and modulate electronic structure but also promote the adsorption and dissociation of reactants and offer substantial potential sites. As expected, porous NC/Vo‐WON array exhibits a small overpotential of 16 mV at the current density of 10 mA cm?2 and a low Tafel slope of 33 mV per decade in alkaline media, accompanied by negligible loss upon a large current density over 100 h. Benefiting from outstanding electrocatalytic hydrogen evolution reaction performance and stability, this defective heterostructure could serve as a prominent alternative electrocatalyst for renewable energy applications.  相似文献   

4.
Electrochemical CO2 reduction (CO2RR) is a promising technology to produce value‐added fuels and weaken the greenhouse effect. Plenty of efforts are devoted to exploring high‐efficiency electrocatalysts to tackle the issues that show poor intrinsic activity, low selectivity for target products, and short‐lived durability. Herein, density functional theory calculations are firstly utilized to demonstrate guidelines for design principles of electrocatalyst, maximum exposure of catalytic active sites for MoS2 edges, and electron transfer from N‐doped carbon (NC) to MoS2 edges. Based on the guidelines, a hierarchical hollow electrocatalyst comprised of edge‐exposed 2H MoS2 hybridized with NC for CO2RR is constructed. In situ atomic‐scale observation for catalyst growth is performed by using a specialized Si/SiNx nanochip at a continuous temperature‐rise period, which reveals the growth mechanism. Abundant exposed edges of MoS2 provide a large quantity of active centers, which leads to a low onset potential of ≈40 mV and a remarkable CO production rate of 34.31 mA cm?2 with 92.68% of Faradaic efficiency at an overpotential of 590 mV. The long‐term stability shows negligible degradation for more than 24 h. This work provides fascinating insights into the construction of catalysts for efficient CO2RR.  相似文献   

5.
MoS2 has drawn great attention as a promising Pt‐substituting catalyst for the hydrogen evolution reaction (HER). This work utilizes H2 as the structure directing agent (SDA) to in situ synthesize a range of Co‐MoS2n (n = 0, 0.5, 1.0, 1.4, 2.0) with expanded interlayer spacings (d = 9.2 – 11.1 Å), which significantly boost their HER activities. The Co‐MoS2‐1.4 with an interlayer spacing of 10.3 Å presents an extremely low overpotential of 56 mV (at 10 mA cm?2) and a Tafel slope of 32 mV dec?1, which is superior than most reported MoS2‐based catalysts. Density function theory calculations are used to gain insights that i) the H2 can be dissociatively adsorbed on MoS2 and greatly affect the related surface free energy by regulating the interlayer spacing; ii) the expanded interlayer spacing can significantly decrease the absolute value of ΔGH, thereby leading to greatly promoted HER activity. Additionally, the large amounts of 1T phase (73.9–79.2%) and Co‐Mo‐S active sites (40.9–91.3%) also contribute to the enhanced HER activity of the synthesized samples. Overall, a simple new strategy for in situ synthesis of Co‐MoS2 with an expanded interlayer spacing is proposed, which sheds light on other 2D energy material designs.  相似文献   

6.
Highly efficient and stable catalysts for the hydrogen evolution reaction, especially in alkaline conditions are crucial for the practical demands of electrochemical water splitting. Here, the synthesis of a novel RuAu single‐atom alloy (SAA) by laser ablation in liquid is reported. The SAA exhibits a high stability and a low overpotential, 24 mV@10 mA cm?2, which is much lower than that of a Pt/C catalyst (46 mV) in alkaline media. Moreover, the turnover frequency of RuAu SAA is three times that of Pt/C catalyst. Density functional theory computation indicates the excellent catalytic activity of RuAu SAAs originates from the relay catalysis of Ru and Au active sites. This work opens a new avenue toward high‐performance SAAs via fast quenching of immiscible metals.  相似文献   

7.
Hydrogen evolution by means of electrocatalytic water‐splitting is pivotal for efficient and economical production of hydrogen, which relies on the development of inexpensive, highly active catalysts. In addition to sulfides, the search for non‐noble metal catalysts has been mainly directed at phosphides due to the superb activity of phosphides for hydrogen evolution reaction (HER) and their low‐cost considering the abundance of the non‐noble constituents of phosphides. Here, recent research focusing on phosphides is summarized based on their synthetic methodology. A comparative study of the catalytic activity of different phosphides towards HER is then conducted. The catalytic activity is evaluated by overpotentials at fixed current density, Tafel slope, turnover frequency, and the Gibbs free energy of hydrogen adsorption. Based on the methods discussed, perspectives for the various methods of phosphides synthesis are given, and the origins of the high activity and the role of phosphorus on the improved activity towards HER are discussed.  相似文献   

8.
Metallic 1T MoS2 is highly desirable for catalyzing electrochemical hydrogen production from water owing to its high electrical conductivity. However, stable 1T MoS2 is difficult to be produced in large‐scale by either common chemical or physical approaches. Here, ultrastable in‐plane 1T–2H MoS2 heterostructures are achieved via a simple one‐pot annealing treatment of 2H MoS2 bulk under a mixture gas of Ar and phosphorous vapor, where phosphorus cannot only occupy the interspace of MoS2 bulk, resulting in the expansion of MoS2, but also embed into the lattice of MoS2, inducing the partial phase transition from 2H to 1T phases of MoS2. Benefiting from its significantly improved electrical conductivity, highly exposed active sites, and hydrophily property, in‐plane 1T–2H MoS2 heterostructures exhibit largely improved electrocatalytic properties for hydrogen evolution reaction (HER) in alkaline electrolytes.  相似文献   

9.
Superior electrocatalytic activities and excellent electrochemical stabilities of inexpensive counter electrodes (CEs) are crucial to the large‐scale practical application of dye‐sensitized solar cells (DSSCs). Herein, an efficient strategy for fabricating nitrogen‐doped graphene nanoribbons (N‐GNRs) via chemical unzipping of carbon nanotubes coupled with nitrogen doping process is reported, where abundant edge sites are produced and fully exposed basal planes of GNRs are activated by the N atoms within GNRs backbone. Benefiting from such unique characteristics, when first applied as CEs for DSSCs with triiodide/iodide electrolyte, a power conversion efficiency of 8.57% is delivered, outperforming GNRs (8.01%) and being superb to that of Pt (7.84%), and outstanding electrochemical stabilities of N‐GNRs are also demonstrated. Density functional theory calculations reveal that the N species within GNRs matrix, especially the predominant quaternary ones, could remarkably decrease the ionization energy of GNRs, which is instrumental to transfer electrons rapidly from external circuit to triiodide, and reduce charge‐transfer resistance, thus contributing to the enhanced photovoltaic performance. The present work has an insight into the unique role of N species on GNRs to the triiodide reduction, and provides an efficient strategy for design of high‐efficiency carbon electrodes with fully exposed active sites in energy conversion/storage devices.  相似文献   

10.
The efficient evolution of hydrogen through electrocatalysis is considered a promising approach to the production of clean hydrogen fuel. Platinum (Pt)‐based materials are regarded as the most active hydrogen evolution reaction (HER) catalysts. However, the low abundance and high cost of Pt hinders the large‐scale application of these catalysts. Active, inexpensive, and earth‐abundant electrocatalysts to replace Pt‐based materials would be highly beneficial to the production of cost‐effective hydrogen energy. Herein, a novel organoimido‐derivatized heteropolyoxometalate, Mo4‐CNP, is designed as a precursor for electrocatalysts of the HER. It is demonstrated that the carbon, nitrogen, and phosphorus sources derived from the Mo4‐CNP molecules lead to in situ confined carburization, phosphorization, and chemical doping on an atomic scale, thus forming nitrogen‐doped porous molybdenum carbide and phosphide hybrids, which exhibit remarkable electrocatalytic activity for the HER. Such an organically functionalized polyoxometalate‐assisted strategy described here provides a new perspective for the development of highly active non‐noble metal electrocatalysts for hydrogen evolution.  相似文献   

11.
Although the maximized dispersion of metal atoms has been realized in the single‐atom catalysts, further improving the intrinsic activity of the catalysts is of vital importance. Here, the decoration of isolated Ru atoms into an edge‐rich carbon matrix is reported for the electrocatalytic hydrogen evolution reaction. The developed catalyst displays high catalytic performance with low overpotentials of 63 and 102 mV for achieving the current densities of 10 and 50 mA cm?2, respectively. Its mass activity is about 9.6 times higher than that of the commercial Pt/C‐20% catalyst at an overpotential of 100 mV. Experimental results and density functional theory calculations suggest that the edges in the carbon matrix enhance the local electric field at the Ru site and accelerate the reaction kinetics for the hydrogen evolution. The present work may provide insights into electrocatalytic behavior and guide the design of advanced electrocatalysts.  相似文献   

12.
13.
14.
15.
Batteries with high energy and power densities along with long cycle life and acceptable safety at an affordable cost are critical for large‐scale applications such as electric vehicles and smart grids, but is challenging. Lithium–sulfur (Li‐S) batteries are attractive in this regard due to their high energy density and the abundance of sulfur, but several hurdles such as poor cycle life and inferior sulfur utilization need to be overcome for them to be commercially viable. Li–S cells with high capacity and long cycle life with a dual‐confined flexible cathode configuration by encapsulating sulfur in nitrogen‐doped double‐shelled hollow carbon spheres followed by graphene wrapping are presented here. Sulfur/polysulfides are effectively immobilized in the cathode through physical confinement by the hollow spheres with porous shells and graphene wrapping as well as chemical binding between heteronitrogen atoms and polysulfides. This rationally designed free‐standing nanostructured sulfur cathode provides a well‐built 3D carbon conductive network without requiring binders, enabling a high initial discharge capacity of 1360 mA h g?1 at a current rate of C/5, excellent rate capability of 600 mA h g?1 at 2 C rate, and sustainable cycling stability for 200 cycles with nearly 100% Coulombic efficiency, suggesting its great promise for advanced Li–S batteries.  相似文献   

16.
The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) are prepared via the combined procedures of refluxing and hydrothermal treatment, consisting of interconnected uniform ZnCo2O4 nanocubes with an average size of 5 nm anchored on graphene nanosheets. The as‐obtained composite can act as an inimitable cathode scaffold to suppress the shuttling of polysulfides by chemical confinement of ZnCo2O4 and N‐RGO for the first time, as demonstrated by the adsorption energy of ZnCo2O4 to Li2S4 via the strong chemical bonding between Zn or Co and S. The RGO nanosheets with a relatively high specific surface area provide a good conductive network and structural stability. The introduction of doped N atoms and numerous ZnCo2O4 porous nanoparticles can inhibit the transfer of lithium polysulfides between the cathode and anode. Due to the unique structural and compositional features, the as‐obtained hybrid materials with the high sulfur loading of 71% and even 82% still deliver high specific capacity, good rate capability, and enhanced cycling stability with exceptionally high initial Coulombic efficiency, which displays a high utilization of sulfur.  相似文献   

17.
Ternary NiCoFe‐layered double hydroxide (NiCoIIIFe‐LDH) with Co3+ is grafted on nitrogen‐doped graphene oxide (N‐GO) by an in situ growth route. The array‐like colloid composite of NiCoIIIFe‐LDH/N‐GO is used as a bifunctional catalyst for both oxygen evolution/reduction reactions (OER/ORR). The NiCoIIIFe‐LDH/N‐GO array has a 3D open structure with less stacking of LDHs and an enlarged specific surface area. The hierarchical structure design and novel material chemistry endow high activity propelling O2 redox. By exposing more amounts of Ni and Fe active sites, the NiCoIIIFe‐LDH/N‐GO illustrates a relatively low onset potential (1.41 V vs reversible hydrogen electrode) in 0.1 mol L?1 KOH solution under the OER process. Furthermore, by introducing high valence Co3+, the onset potential of this material in ORR is 0.88 V. The overvoltage difference is 0.769 V between OER and ORR. The key factors for the excellent bifunctional catalytic performance are believed to be the Co with a high valence, the N‐doping of graphene materials, and the highly exposed Ni and Fe active sites in the array‐like colloid composite. This work further demonstrates the possibility to exploit the application potential of LDHs as OER and ORR bifunctional electrochemical catalysts.  相似文献   

18.
CuO as a catalyst has shown promising application prospects in photocatalytic splitting of water into hydrogen (H2). However, the instability of CuO in amine aqueous solution limits the applications of CuO‐based photocatalysts in the photocatalytic H2 evolution. In this work, a novel dodecahedral nitrogen (N)‐doped carbon (C) coated CuO‐In2O3 p–n heterojunction (DNCPH) is designed and synthesized by directly pyrolyzing benzimidazole‐modified dodecahedral Cu/In‐based metal‐organic frameworks, showing long‐term stability in triethanolamine (TEOA) aqueous solution and excellent photocatalytic H2 production efficiency. The improved stability of DNCPH in TEOA solution is ascribed to the alleviation of electron deficiency in CuO by forming the p–n heterojunction and the protection with coated N‐doped C layer. Based on detailed theoretical calculations and experimental studies, it is found that the improved separation efficiency of photogenerated electron/hole pairs and the mediated adsorption behavior (|?GH*|→0) by coupling N‐doped C layer with CuO‐In2O3 p–n heterojunction lead to the excellent photocatalytic H2 production efficiency of DNCPH. This work provides a feasible strategy for effectively applying CuO‐based photocatalysts in photocatalytic H2 production.  相似文献   

19.
20.
Hydrogen evolution reaction (HER) is a key reaction in water splitting, and developing efficient and robust non‐noble electrocatalysts for HER is still a great challenge for large‐scale hydrogen production. Herein, a vertically aligned core–shell structure grown on Ti foil with CoP nanoarray as a core and N,P‐doped carbon (NPC) as a shell (CoP/NPC/TF) is first reported as an efficient electrocatalyst for HER. Results indicate that CoP/NPC/TF only demands the overpotentials of 91 and 80 mV to drive the current density of 10 mA cm?2 in acidic and alkaline solutions. The electrochemical measurements and theoretical calculations show that the synergy of CoP nanorod core and porous NPC shell enhances HER performance significantly, because the introduction of porous NPC shell not only offers more active sites but also improves the electrical conductivity and durability of the sample in acidic and alkaline solutions. Density functional theory calculation further reveals that all the C atoms between N and P atoms in CoP/NPC are the most efficient active sites, which greatly improve the HER performance. The identification of active species in this work provides an effective strategy to design and synthesize the low‐cost, high‐efficient, and robust CoP‐based electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号