首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The formation of a solid‐electrolyte interphase on the anode surface of an Li‐ion battery using an organic liquid electrolyte robs Li+ irreversibly form the cathode on the initial charge if the cells are fabricated in the discharged state. In order to increase the cathode capacity, the use of Li3N as a sacrificial source of Li+ on the initial charge has been evaluated chemically and electrochemically as an additive to an LiCoO2 cathode. Li3N is shown to be chemically stable in a dry atmosphere as small particles with fresh surfaces and can increase the reversible capacities of a full cell without compromising the rate capability of the cells.  相似文献   

7.
Understanding and optimizing the temperature effects of Li‐ion diffusion by analyzing crystal structures of layered Li(NixMnyCoz)O2 (NMC) (x + y + z = 1) materials is important to develop advanced rechargeable Li‐ion batteries (LIBs) for multi‐temperature applications with high power density. Combined with experiments and ab initio calculations, the layer distances and kinetics of Li‐ion diffusion of LiNixMnyCozO2 (NMC) materials in different states of Li‐ion de‐intercalation and temperatures are investigated systematically. An improved model is also developed to reduce the system error of the “Galvanostatic Intermittent Titration Technique” with a correction of NMC particle size distribution. The Li‐ion diffusion coefficients of all the NMC materials are measured from ?25 to 50 °C. It is found that the Li‐ion diffusion coefficient of LiNi0.6Mn0.2Co0.2O2 is the largest with the minimum temperature effect. Ab initio calculations and XRD measurements indicate that the larger Li slab space benefits to Li‐ion diffusion with minimum temperature effect in layered NMC materials.  相似文献   

8.
Structural changes in Li2MnO3 cathode material for rechargeable Li‐ion batteries are investigated during the first and 33rd cycles. It is found that both the participation of oxygen anions in redox processes and Li+‐H+ exchange play an important role in the electrochemistry of Li2MnO3. During activation, oxygen removal from the material along with Li gives rise to the formation of a layered MnO2‐type structure, while the presence of protons in the interslab region, as a result of electrolyte oxidation and Li+‐H+ exchange, alters the stacking sequence of oxygen layers. Li re‐insertion by exchanging already present protons reverts the stacking sequence of oxygen layers. The re‐lithiated structure closely resembles the parent Li2MnO3, except that it contains less Li and O. Mn4+ ions remain electrochemically inactive at all times. Irreversible oxygen release occurs only during activation of the material in the first cycle. During subsequent cycles, electrochemical processes seem to involve unusual redox processes of oxygen anions of active material along with the repetitive, irreversible oxidation of electrolyte species. The deteriorating electrochemical performance of Li2MnO3 upon cycling is attributed to the structural degradation caused by repetitive shearing of oxygen layers.  相似文献   

9.
10.
11.
12.
13.
14.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

15.
All‐solid‐state thin film lithium batteries are promising devices to power the next generations of autonomous microsystems. Nevertheless, some industrial constraints such as the resistance to reflow soldering (260 °C) and to short‐circuiting necessitate the replacement of the lithium anode. In this study, a 2 V lithium‐ion system based on amorphous silicon nanofilm anodes (50–200 nm thick), a LiPON electrolyte, and a new lithiated titanium oxysulfide cathode Li1.2TiO0.5S2.1 is prepared by sputtering. The determination of the electrochemical behavior of each active material and of whole systems with different configurations allows the highlighting of the particular behavior of the LixSi electrode and the understanding of its consequences on the performance of Li‐ion cells. Lithium‐ion microbatteries processed with industrial tools and embedded in microelectronic packages exhibit particularly high cycle life (?0.006% cycle?1), ultrafast charge (80% capacity in 1 min), and tolerate both short‐circuiting and reflow soldering. Moreover, the perfect stability of the system allows the assignment of some modifications of the voltage curve and a slow and reversible capacity fade occurring in specific conditions, to the formation of Li15Si4 and to the expression of a “memory effect.” These new findings will help to optimize the design of future Li‐ion systems using nanosized silicon anodes.  相似文献   

16.
Lithium‐ion capacitors (LICs) with capacitor‐type cathodes and battery‐type anodes are considered a promising next‐generation advanced energy storages system that meet the requirements of high energy density and power density. However, the mismatch of charge‐storage capacity and electrode kinetics between positive and negative electrodes remains a challenge. Herein, layered SnS2/reduced graphene oxide (RGO) nanocomposites are developed for negative electrodes and a 2D B/N codoped carbon (BCN) nanosheet is designed for the positive electrode. The SnS2/RGO derived from SnS2‐bonded RGO of high conductivity exhibits a capacity of 1198 mA h g?1 at 100 mA g?1. Boron and nitrogen atoms in BCN are found to promote adsorption of anions, which enhance the pseudocapacitive contribution as well as expanding the voltage of LICs. A quantitative kinetics analysis indicates that the SnS2/RGO electrodes with a dominating capacitive mechanism and a diminished intercalation process, benefit the kinetic balance between the two electrodes. With this particular structure, the LIC is able to operate at the highest operating voltage for these devices recorded to date (4.5 V), exhibiting an energy density of 149.5 W h kg?1, a power density of 35 kW kg?1, and a capacity retention ratio of 90% after 10 000 cycles.  相似文献   

17.
Li‐ion batteries as energy storage devices need to be periodically charged for sustainably powering electronic devices owing to their limited capacities. Here, the feasibility of utilizing Li‐ion batteries as both the energy storage and scavenging units is demonstrated. Flexible Li‐ion batteries fabricated from electrospun LiMn2O4 nanowires as cathode and carbon nanowires as anode enable a capacity retention of 90% coulombic efficiency after 50 cycles. Through the coupling between triboelectrification and electrostatic induction, the adjacent electrodes of two Li‐ion batteries can deliver an output peak voltage of about 200 V and an output peak current of about 25 µA under ambient wind‐induced vibrations of a hexafluoropropene–tetrafluoroethylene copolymer film between the two Li‐ion batteries. The self‐charging Li‐ion batteries have been demonstrated to charge themselves up to 3.5 V in about 3 min under wind‐induced mechanical excitations. The advantages of the self‐charging Li‐ion batteries can provide important applications for sustainably powering electronics and self‐powered sensor systems.  相似文献   

18.
One of the key challenges of Li‐ion electrodes is enhancement of (dis)charge rates. This is severely hindered by the absence of a technique that allows direct and nondestructive observation of lithium ions in operating batteries. Direct observation of the Li‐ion concentration profiles using operando neutron depth profiling reveals that the rate‐limiting step is depended not only on the electrode morphology but also on the cycling rate itself. In the LiFePO4 electrodes phase nucleation limits the charge transport at the lowest cycling rates, whereas electronic conductivity is rate limiting at intermediate rates, and only at the highest rates ionic transport through the electrode is rate limiting. These novel insights into electrode kinetics are imperative for the improvement of Li‐ion batteries and show the large value of in situ NDP in Li‐ion battery research and development.  相似文献   

19.
In an attempt to overcome the problems associated with LiNiO2, the solid solution series of lithium nickel‐metal oxides, Li[Ni1–xMx]O2 (with M = Co, Mn, Al, Ti, Mg, etc.), have been investigated as favorable cathode materials for high‐energy and high‐power lithium‐ion batteries. However, along with the improvement in the electrochemical properties in Ni‐based cathode materials, the thermal stability has been a great concern, and thus violent reaction of the cathode with the electrolyte needs to be avoided. Here, we report a heterostructured Li[Ni0.54Co0.12Mn0.34]O2 cathode material which possesses both high energy and safety. The core of the particle is Li[Ni0.54Co0.12Mn0.34]O2 with a layered phase (R3‐m) and the shell, with a thickness of < 0.5 μm, is a highly stable Li1+x[CoNixMn2–x]2O4 spinel phase (Fd‐3m). The material demonstrates reversible capacity of 200 mAhg‐1 and retains 95% capacity retention under the most severe test condition of 60 °C. In addition, the amount of oxygen evolution from the lattice in the cathode with two heterostructures is reduced by 70%, compared to the reference sample. All these results suggest that the bulk Li[Ni0.54Co0.12Mn0.34]O2 consisting of two heterostructures satisfy the requirements for hybrid electric vehicles, power tools, and mobile electronics.  相似文献   

20.
A novel Sn4P3/graphite composite anode material with superior capacity and cycling performance (651 mA h g?1 after 100 cycles) is investigated by in situ X‐ray absorption spectroscopy. Extended X‐ray absorption fine structure modeling and detailed analysis of local environment changes are correlated to the cell capacity and reveal the mechanism of lithiation/delithiation process. Results show that in the first two lithiation/delithiation cycles crystalline Sn4P3 is fully converted to an amorphous SnPx phase, which in further cycles participates in reversible conversion and alloying reactions. The superior reversibility of this material is attributed to the highly dispersed SnPx in the graphite matrix, which provides enhanced electrical conductivity and prevents aggregation of Sn clusters during the lithiation/delithiation process. The gradual capacity fading in long‐term cycling is attributed to the observed increase in the size and the amount of metallic Sn clusters in the delithiated state, correlated to the reduced recovery of the SnPx phase. This paper reveals the mechanism responsible for the highly reversible tin phosphides and provides insights for improving the capacity and cycle life of conversion and alloying materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号