首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charge‐carriers photoexcited above a semiconductor's bandgap rapidly thermalize to the band‐edge. The cooling of these difficult to collect “hot” carriers caps the available photon energy that solar cells–including efficient perovskite solar cells–may utilize. Here, the dynamics and efficiency of hot carrier extraction from MAPbI3 (MA = methylammonium) perovskite by spiro‐OMeTAD (a hole‐transporting layer) and TiO2 (an electron‐transporting layer) are investigated and explained using both ultrafast electronic spectroscopy and theoretical modeling. Time‐resolved spectroscopy reveals a quasi‐equilibrium distribution of hot carriers forming upon excess‐energy excitation of the perovskite–a distribution largely unaffected by the presence of TiO2. In contrast, the quasi‐equilibrium distribution of hot carriers is virtually nonexistent when spiro‐OMeTAD is present, which is indicative of efficient hot hole extraction at the interface of MAPbI3. Density functional theory calculations predict that deep energy‐levels of MAPbI3 exhibit electronically delocalized character, with significant overlap with the localized valence band charge of the spiro‐OMeTAD molecules lying on the surface of MAPbI3. Consequently, hot holes are easily extracted from the deep energy‐levels of MAPbI3 by spiro‐OMeTAD. These findings uncover the origins of efficient hot hole extraction in perovskites and offer a practical blueprint for optimizing solar cell interlayers to enable hot carrier utilization.  相似文献   

2.
Despite their excellent power conversion efficiency, MAPbI3 solar cells exhibit strong hysteresis that hinders reliable device operation. Herein it is shown that ionic motion is the dominant mechanism underlying hysteresis of MAPbI3 solar cells by studying the effects of electrical poling in different temperature ranges. Complete suppression of the hysteresis below 170 K is consistent with temperature activated diffusion of I? anions and/or the motion of the MA+ cations. Ionic motion has important effect on the overall efficiency of the MAPbI3 solar cells: the initial decrease of the power conversion efficiency while lowering the operating temperature is recovered and even enhanced up to 20% of its original value by applying an electrical poling. The open circuit voltage significantly increases and the current density fully recovers due to the reduction of the electron extraction barrier at the TiO2/MAPbI3 interface driven by the charge accumulation at the interface. Moreover, beside TiO2/MAPbI3 interfacial charge transfer, charge transport in TiO2 strongly affects the photovoltaic performance, as revealed by MAPbI3/ms‐TiO2 field effect transistors. These results establish the basis to develop effective strategies to mitigate operational instability of perovskites solar cells.  相似文献   

3.
Grains and grain boundaries play key roles in determining halide perovskite‐based optoelectronic device performance. Halide perovskite monocrystalline solids with large grains, smaller grain boundaries, and uniform surface morphology improve charge transfer and collection, suppress recombination loss, and thus are highly favorable for developing efficient solar cells. To date, strategies of synthesizing high‐quality thin monocrystals (TMCs) for solar cell applications are still limited. Here, by combining the antisolvent vapor‐assisted crystallization and space‐confinement strategies, high‐quality millimeter sized TMCs of methylammonium lead iodide (MAPbI3) perovskites with controlled thickness from tens of nanometers to several micrometers have been fabricated. The solar cells based on these MAPbI3 TMCs show power conversion efficiency (PCE) of 20.1% which is significantly improved compared to their polycrystalline counterparts (PCE) of 17.3%. The MAPbI3 TMCs show large grain size, uniform surface morphology, high hole mobility (up to 142 cm2 V?1 s?1), as well as low trap (defect) densities. These properties suggest that TMCs can effectively suppress the radiative and nonradiative recombination loss, thus provide a promising way for maximizing the efficiency of perovskite solar cells.  相似文献   

4.
Solution‐processed few‐layer MoS2 flakes are exploited as an active buffer layer in hybrid lead–halide perovskite solar cells (PSCs). Glass/FTO/compact‐TiO2/mesoporous‐TiO2/CH3NH3PbI3/MoS2/Spiro‐OMeTAD/Au solar cells are realized with the MoS2 flakes having a twofold function, acting both as a protective layer, by preventing the formation of shunt contacts between the perovskite and the Au electrode, and as a hole transport layer from the perovskite to the Spiro‐OMeTAD. As prepared PSC demonstrates a power conversion efficiency (η) of 13.3%, along with a higher lifetime stability over 550 h with respect to reference PSC without MoS2η/η = ?7% vs. Δη/η = ?34%). Large‐area PSCs (1.05 cm2 active area) are also fabricated to demonstrate the scalability of this approach, achieving η of 11.5%. Our results pave the way toward the implementation of MoS2 as a material able to boost the shelf life of large‐area perovskite solar cells in view of their commercialization.  相似文献   

5.
Inverted organic solar cells generally exhibit a strong s‐shaped kink in the current–voltage characteristics (JV curve) that may be removed by exposure to UV light (light‐soaking) leading to a drastically improved performance. Using in‐device characterization methods the origin of the light‐soaking issue in inverted solar cells employing titanium dioxide (TiO2) as an electron selective layer is clarified. An injected hole reservoir accumulated at the TiO2/organic interface of the pristine device is observed from extraction current transients; the hole reservoir increases the recombination and results in an s‐shape in the JV curve of pristine devices. The hole reservoir and the s‐shape is a result of the energetics at the selective contact in the pristine device; the effect of UV exposure is to decrease the work function of the indium tin oxide/TiO2‐contact, increasing the built‐in potential. This hinders the build‐up of the hole reservoir and the s‐shape is removed. The proposed model is in excellent agreement with drift‐diffusion simulations.  相似文献   

6.
Recent advances in the efficiency of crystalline silicon (c‐Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n‐type c‐Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.  相似文献   

7.
On the basis of experiment and theory, a general paradigm is drawn that reconsiders N2 not simply being an inert species but rather an effective healing gas molecule if entering a methylammonium lead iodide (MAPbI3) layer. Nitrogen is soaked into polycrystalline MAPbI3 via a postdeposition mild thermal treatment under slightly overpressure conditions to promote its diffusion across the whole layer. A significant reduction of radiative recombination and a concurrent increase of light absorption, with a maximum benefit at 80 °C, are observed. Concomitantly, the current of holes drawn from the surfaces with nanometer resolution through a biased tip is raised by a factor of 3 under N2. This is framed by a reduction of the barrier for carrier extraction. The achieved improvements are linked to a nitrogen‐assisted recovery of intrinsic lattice disorder at the grain shells along with a simultaneous stabilization of undercoordinated Pb2+ and MA+ cations through weak electrostatic interactions. Defect mitigation under N2 is reinforced in comparison to the benchmark behavior under argon. It is additionally unveiled that surface stabilization through N2 is morphology‐independent and thus can be applied after any preparation procedure. Such simple and low‐cost strategy can complement other stabilizing solutions for perovskite solar cells or light‐emitting diode engineering.  相似文献   

8.
An open‐circuit voltage (Voc) of 1.57 V under simulated AM1.5 sunlight in planar MAPbBr3 solar cells with carbon (graphite) electrodes is obtained. The hole‐transport‐material‐free MAPbBr3 solar cells with the normal architecture (FTO/TiO2/MAPbBr3/carbon) show little hysteresis during current–voltage sweep under simulated AM1.5 sunlight. A solar‐to‐electricity power conversion efficiency of 8.70% is achieved with the champion device. Accordingly, it is proposed that the carbon electrodes are effective to extract photogenerated holes in MAPbBr3 solar cells, and the industry‐applicable carbon electrodes will not limit the performance of bromide‐based perovskite solar cells. Based on the analysis of the band alignment, it is found that the voltage (energy) loss across the interface between MAPbBr3 and carbon is very small compared to the offset between the valence band maximum of MAPbBr3 and the work function of graphite. This finding implies either Fermi level pinning or highly doped region inside MAPbBr3 layer exists. The band‐edge electroluminescence spectra of MAPbBr3 from the solar cells further support no back‐transfer pathways of electrons across the MAPbBr3/TiO2 interface.  相似文献   

9.
Perovskite solar cells (PSCs) have reached their highest efficiency with 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). However, this material can cause problems with respect to reproducibility and stability. Herein, a solution‐processable inorganic–organic double layer based on tungsten oxide (WO3) and spiro‐OMeTAD is reported as a hole transport layer in PSCs. The device equipped with a WO3/spiro‐OMeTAD layer achieves the highest efficiency (21.44%) in the tin (IV) oxide planar structure. The electronic properties of the double layer are thoroughly analyzed using photoluminescence, space‐charge–limited current, and electrochemical impedance spectroscopy. The WO3/spiro‐OMeTAD layer exhibits better hole extraction ability and faster hole mobility. The WO3 layer particularly improves the open‐circuit voltage (VOC) by lowering the quasi‐Fermi energy level for holes and reducing charge recombination, resulting in high VOC (1.17 V in the champion cell). In addition, the WO3 layer as a scaffold layer promotes the formation of a uniform and pinhole‐free spiro‐OMeTAD overlayer in the WO3/spiro‐OMeTAD layer. High stability under thermal and humid conditions stems from this property. The study presents a facile approach for improving the efficiency and stability of PSCs by stacking an organic layer on an inorganic layer.  相似文献   

10.
Lead tri‐iodide methylammonium (MAPbI3) perovskite polycrystalline materials show complex optoelectronic behavior, largely because their 3D semiconducting inorganic framework is strongly perturbed by the organic cations and ubiquitous structural or chemical inhomogeneities. Here, a newly developed time‐dependent density functional theory‐based theoretical formalism is taken advantage of. It treats electron–hole and electron–nuclei interactions on the same footing to assess the many‐body excited states of MAPbI3 perovskites in their pristine state and in the presence of point chemical defects. It is shown that lead and iodine vacancies yield deep trap states that can be healed by dynamic effects, namely rotation of the methylammonium cations in response to point charges, or through slight changes in chemical composition, namely by introducing a tiny amount of chlorine dopants in the defective MAPbI3. The theoretical results are supported by photoluminescence experiments on MAPbI3?mClm and pave the way toward the design of defect‐free perovskite materials with optoelectronic performance approaching the theoretical limits.  相似文献   

11.
Thin film solar cells made from earth‐abundant, non‐toxic materials are needed to replace the current technology that uses Cu(In,Ga)(S,Se)2 and CdTe, which contain scarce and toxic elements. One promising candidate absorber material is tin monosulfide (SnS). In this report, pure, stoichiometric, single‐phase SnS films were obtained by atomic layer deposition (ALD) using the reaction of bis(N,N′‐diisopropylacetamidinato)tin(II) [Sn(MeC(N‐iPr)2)2] and hydrogen sulfide (H2S) at low temperatures (100 to 200 °C). The direct optical band gap of SnS is around 1.3 eV and strong optical absorption (α > 104 cm?1) is observed throughout the visible and near‐infrared spectral regions. The films are p‐type semiconductors with carrier concentration on the order of 1016 cm?3 and hole mobility 0.82–15.3 cm2V?1s?1 in the plane of the films. The electrical properties are anisotropic, with three times higher mobility in the direction through the film, compared to the in‐plane direction.  相似文献   

12.
In this report, highly efficient and humidity‐resistant perovskite solar cells (PSCs) using two new small molecule hole transporting materials (HTM) made from a cost‐effective precursor anthanthrone (ANT) dye, namely, 4,10‐bis(1,2‐dihydroacenaphthylen‐5‐yl)‐6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene (ACE‐ANT‐ACE) and 4,4′‐(6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene‐4,10‐diyl)bis(N,N‐bis(4‐methoxyphenyl)aniline) (TPA‐ANT‐TPA) are presented. The newly developed HTMs are systematically compared with the conventional 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamino)‐9,9′‐spirbiuorene (Spiro‐OMeTAD). ACE‐ANT‐ACE and TPA‐ANT‐TPA are used as a dopant‐free HTM in mesoscopic TiO2/CH3NH3PbI3/HTM solid‐state PSCs, and the performance as well as stability are compared with Spiro‐OMeTAD‐based PSCs. After extensive optimization of the metal oxide scaffold and device processing conditions, dopant‐free novel TPA‐ANT‐TPA HTM‐based PSC devices achieve a maximum power conversion efficiency (PCE) of 17.5% with negligible hysteresis. An impressive current of 21 mA cm?2 is also confirmed from photocurrent density with a higher fill factor of 0.79. The obtained PCE of 17.5% utilizing TPA‐ANT‐TPA is higher performance than the devices prepared using doped Spiro‐OMeTAD (16.8%) as hole transport layer at 1 sun condition. It is found that doping of LiTFSI salt increases hygroscopic characteristics in Spiro‐OMeTAD; this leads to the fast degradation of solar cells. While, solar cells prepared using undoped TPA‐ANT‐TPA show dewetting and improved stability. Additionally, the new HTMs form a fully homogeneous and completely covering thin film on the surface of the active light absorbing perovskite layers that acts as a protective coating for underlying perovskite films. This breakthrough paves the way for development of new inexpensive, more stable, and highly efficient ANT core based lower cost HTMs for cost‐effective, conventional, and printable PSCs.  相似文献   

13.
Over the past five years, there has been a significant increase in both the intensity of research and the performance of crystalline silicon devices which utilize metal compounds to form carrier‐selective heterocontacts. Such heterocontacts are less fundamentally limited and have the potential for lower costs compared to the current industry dominating heavily doped, directly metalized contacts. A low temperature (≤230 °C), TiOx/LiFx/Al electron heterocontact is presented here, which achieves mΩcm2 scale contact resistivities ρc on lowly doped n‐type substrates. As an extreme demonstration of the potential of this heterocontact, it is trialed in a newly developed, high efficiency n‐type solar cell architecture as a partial rear contact (PRC). Despite only contacting ≈1% of the rear surface area, an efficiency of greater than 23% is achieved, setting a new benchmark for n‐type solar cells featuring undoped PRCs and confirming the unusually low ρc of the TiOx/LiFx/Al contact. Finally, in contrast to previous versions of the n‐type undoped PRC cell, the performance of this cell is maintained after annealing at 350–400 °C, suggesting its compatibility with conventional surface passivation activation and sintering steps.  相似文献   

14.
Organic–inorganic hybrid lead halide perovskites are emerging as highly promising candidates for highly efficient thin film photovoltaics due to their excellent optoelectronic properties and low‐temperature process capability. However, the long‐term stability in ambient air still is a key issue limiting their further practical applications. Herein, the enhancement of both performance and stability of perovskite solar cells is reported by employing 2D and 3D heterostructured perovskite films with unique nanoplate/nanocrystalline morphology. The 2D/3D heterostructured perovskites combine advantages of the high‐performance lead‐based perovskite 3D CH3NH3PbI3 (MAPbI3) and the air‐stable bismuth‐based quasi‐perovskite 2D MA3Bi2I9. In the 2D/3D heterostructure, the hydrophobic MA3Bi2I9 platelets vertically situate between the MAPbI3 grains, forming a lattice‐like structure to tightly enclose the 3D MAPbI3 perovskite grains. The solar cell based on the optimal 2D/3D (9.2%) heterostructured film achieves a high efficiency of 18.97%, with remarkably reduced hysteresis and significantly improved stability. The work demonstrates that construction of 2D/3D heterostructured films by hybridizing different species of perovskite materials is a feasible way to simultaneously enhance both efficiency and stability of perovskite solar cells.  相似文献   

15.
The design and performance of solar cells based on InP grown by the nonepitaxial thin‐film vapor–liquid–solid (TF‐VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p‐InP absorber layer, n‐TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p‐doping process for TF‐VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open‐circuit voltage (VOC) of 692 mV, short‐circuit current (JSC) of 26.9 mA cm?2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p‐InP.  相似文献   

16.
An efficient perovskite photovoltaic‐thermoelectric hybrid device is demonstrated by integrating the hole‐conductor‐free perovskite solar cell based on TiO2/ZrO2/carbon structure and the thermoelectric generator. The whole solar spectrum of AM 1.5 G is fully utilized with the ≈1.55 eV band gap perovskite (5‐AVA)x(MA)1?xPbI3 absorbing the visible light and the carbon back contact absorbing the infrared light. The added thermoelectric generator improves the device performance by converting the thermal energy into electricity via the Seebeck effect. An optimized hybrid device is obtained with a maximum point power output of 20.3% and open‐circuit voltage of 1.29 V under the irradiation of 100 mW cm?2.  相似文献   

17.
As perovskite solar cells (PSCs) are highly efficient, demonstration of high‐performance printed devices becomes important. 2D/3D heterostructures have recently emerged as an attractive way to relieving the film inhomogeneity and instability in perovskite devices. In this work, a 2D/3D ensemble with 2D perovskites self‐assembled atop 3D methylammonium lead triiodide (MAPbI3) via a one‐step printing process is shown. A clean and flat interface is observed in the 2D/3D bilayer heterostructure for the first time. The 2D perovskite capping layer significantly suppresses nonradiative charge recombination, resulting in a marked increase in open‐circuit voltage (VOC) of the devices by up to 100 mV. An ultrahigh VOC of 1.20 V is achieved for MAPbI3 PSCs, corresponding to 91% of the Shockley–Queisser limit. Moreover, notable enhancement in light, thermal, and moisture stability is obtained as a result of the protective barrier of the 2D perovskites. These results suggest a viable approach for scalable fabrication of highly efficient perovskite solar cells with enhanced environmental stability.  相似文献   

18.
To date, the most efficient perovskite solar cells (PSCs) employ an n–i–p device architecture that uses a 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) hole‐transporting material (HTM), which achieves optimum conductivity with the addition of lithium bis(trifluoromethane)sulfonimide (LiTFSI) and air exposure. However, this additive along with its oxidation process leads to poor reproducibility and is detrimental to stability. Herein, a dicationic salt spiro‐OMeTAD(TFSI)2, is employed as an effective p‐dopant to achieve power conversion efficiencies of 19.3% and 18.3% (apertures of 0.16 and 1.00 cm2) with excellent reproducibility in the absence of LiTFSI and air exposure. As far as it is known, these are the highest‐performing n–i–p PSCs without LiTFSI or air exposure. Comprehensive analysis demonstrates that precise control of the proportion of [spiro‐OMeTAD]+ directly provides high conductivity in HTM films with low series resistance, fast hole extraction, and lower interfacial charge recombination. Moreover, the spiro‐OMeTAD(TFSI)2‐doped devices show improved stability, benefitting from well‐retained HTM morphology without forming aggregates or voids when tested under an ambient atmosphere. A facile approach is presented to fabricate highly efficient PSCs by replacing LiTFSI with spiro‐OMeTAD(TFSI)2. Furthermore, this study provides an insight into the relationship between device performance and the HTM doping level.  相似文献   

19.
Inorganic lead halide perovskites have attracted attention due to their tolerance to higher processing temperature and higher bandgap suitable for tandem solar cell application. Not only do they improve cell stability and efficiency, they also reveal many interesting and un‐anticipated material qualities. This work reports a simple cation exchange growth (CEG) method for fabricating inorganic high‐quality cesium lead iodide (CsPbI3) by adding methylammonium iodide (MAI) additive in the precursor. X‐ray diffraction results reveal a multi‐stage film formation process whereby i) MAPbI3 perovskite first formed that acts as a perovskite template for ii) subsequent ion exchange whereby the MA+ ions in the MAPbI3 are replaced by Cs+ (as temperature ramps up) and iii) form g‐phase perovskite CsPbI3. Optical microscopy, photoluminescence, and electrical characterizations reveal that the CEG process produces high‐quality film with better absorption, uniform and dense film with better interface, lower defects, and better stability. Using the CEG approach, the power conversion efficiency of the best CsPbI3 solar cell is significantly increased up to 14.1% for the device fabricated using 1.0 m MAI additive. The outcome is beneficial for further improvement of inorganic perovskite solar cells and their application in perovskite‐silicon tandem devices.  相似文献   

20.
Remarkable power conversion efficiencies (PCE) of metal–halide perovskite solar cells (PSCs) are overshadowed by concerns about their ultimate stability, which is arguably the prime obstacle to commercialization of this promising technology. Herein, the problem is addressed by introducing ethane‐1,2‐diammonium (+NH3(CH2)2NH3+, EDA2+) cations into the methyl ammonium (CH3NH3+, MA+) lead iodide perovskite, which enables, inter alia, systematic tuning of the morphology, electronic structure, light absorption, and photoluminescence properties of the perovskite films. Incorporation of <5 mol% EDA2+ induces strain in the perovskite crystal structure with no new phase formed. With 0.8 mol% EDA2+, PCE of the MAPbI3‐based PSCs (aperture of 0.16 cm2) improves from 16.7% ± 0.6% to 17.9% ± 0.4% under 1 sun irradiation, and fabrication of larger area devices (aperture 1.04 cm2) with a certified PCE of 15.2% ± 0.5% is demonstrated. Most importantly, EDA2+/MA+‐based solar cells retain 75% of the initial performance after 72 h of continuous operation at 50% relative humidity and 50 °C under 1 sun illumination, whereas the MAPbI3 devices degrade by approximately 90% within only 15 h. This substantial improvement in stability is attributed to the steric and coulombic interactions of embedded EDA2+ in the perovskite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号